Advertisement

Solar Physics

, Volume 120, Issue 2, pp 285–307 | Cite as

The formation of flare loops by magnetic reconnection and chromospheric ablation

  • T. G. Forbes
  • J. M. Malherbe
  • E. R. Priest
Article

Abstract

Slow-mode shocks produced by reconnection in the corona can provide the thermal energy necessary to sustain flare loops for many hours. These slow shocks have a complex structure because strong thermal conduction along field lines dissociates the shocks into conduction fronts and isothermal subshocks. Heat conducted along field lines mapping from the subshocks to the chromosphere ablates chromospheric plasma and thereby creates the hot flare loops and associated flare ribbons. Here we combine a non-coplanar compressible reconnection theory with simple scaling arguments for ablation and radiative cooling, and predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G the temperature of the hot flare loops decreases from 1.2 × 107 K to 4.0 × 106 K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0% to 86% of the total field. When the perpendicular component exceeds 86% of the total field or when the altitude of the reconnection site exceeds 106km, flare loops no longer occur. Shock enhanced radiative cooling triggers the formation of cool Hα flare loops with predicted densities of ≈ 1013 cm−3, and a small gap of ≈ 103 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.

Keywords

Magnetic Field Flare Thermal Energy Field Line Magnetic Reconnection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. V.: 1975, J. Comp. Phys. 17, 246.Google Scholar
  2. Antiochos, S. K.: 1980, Astrophys. J. 236, 270.Google Scholar
  3. Antiochos, S. K. and Sturrock, P. A.: 1978, Astrophys. J. 220, 1137.Google Scholar
  4. Bruzek, A.: 1964, Astrophys. J. 140, 746.Google Scholar
  5. Carmichael, H.: 1964, in W. N. Hess (ed.), AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, p.451.Google Scholar
  6. Cargill, P. J. and Priest, E. R.: 1983, Astrophys. J. 266, 383.Google Scholar
  7. Chevalier, R. A. and Theys, J. C: 1975, Astrophys. J. 195, 53.Google Scholar
  8. Coroniti, F. V.: 1970, J. Plasma Phys. 4, 265.Google Scholar
  9. Cox, D. P.: 1972, Astrophys. J. 178, 143.Google Scholar
  10. Craig, I. J. D. and McClymont, A. N.: 1976, Solar Phys. 50, 133.Google Scholar
  11. Craig, I. J. D. and McClymont, A. N.: 1981, Solar Phys. 70, 97.Google Scholar
  12. Edmiston, J. P. and Kennel, C. F.: 1986, J. Geophys. Res. 91, 1361.Google Scholar
  13. Ferraro, V. C. A. and Plumpton, C.: 1966, An Introduction to Magneto-Fluid Mechanics, Clarendon Press, Oxford, p. 101.Google Scholar
  14. Forbes, T. G.: 1986, Astrophys. J. 305, 553.Google Scholar
  15. Forbes, T. G. and Malherbe, J. M: 1986, Astrophys. J. 302, L67.Google Scholar
  16. Forbes, T. G. and Priest, E. R.: 1983, Solar Phys. 88, 211.Google Scholar
  17. Heinzel, P. and Karlický, M.: 1987, Solar Phys. 110, 343.Google Scholar
  18. Hildner, E.: 1974, Solar Phys. 35, 123.Google Scholar
  19. Hirayama, T.: 1974, Solar Phys. 34, 323.Google Scholar
  20. Jakimiec, J., Sylwester, B., Sylwester, J., Lemen, J. R., Mewe, R., Bentley, R. D., Peres, G., Serio, S., and Schrijver J.: 1987, in V. E. Stepanov and V. N. Obridko (eds.), Solar Maximum Analysis, VNU Science Press, Utrecht, p. 91.Google Scholar
  21. Kennel, C. F.: 1987, J. Geophys. Res. 92, 13427.Google Scholar
  22. Kleczek, J.: 1964, in W. N. Hess (ed.), AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, p. 77.Google Scholar
  23. Kopp, R. A. and Pneuman, G. W.: 1976, Solar Phys. 50, 85.Google Scholar
  24. Landau, L. D. and Lifshitz, E. M.: 1959, Fluid Mechanics, Pergamon Press, London, p. 342.Google Scholar
  25. Leroy, J. L., Bommier, V., and Sahal-Brechot, S.: 1984, Astron. Astrophys. 131, 33.Google Scholar
  26. Lin, H.-A., Lin, R. P., and Kane, S. R.: 1985, Solar Phys. 99, 263.Google Scholar
  27. Malherbe, J. M.: 1987, Thèse de Doctorat d'État des Sciences, University de Paris VII, p. 154.Google Scholar
  28. Malherbe, J. M., Forbes, T. G., and Priest, E. R.: 1984, The Hydromagnetics of the Sun, ESA SP-220, p. 119.Google Scholar
  29. Martin, S. F.: 1979, Solar Phys. 64, 165.Google Scholar
  30. McCabe, M.: 1973, Solar Phys. 30, 439.Google Scholar
  31. McClymont, A. N. and Canfield, R. C.: 1983, Astrophys. J. 265, 497.Google Scholar
  32. Morishita, H.: 1985, Tokyo Astron. Bull. 272, 3123.Google Scholar
  33. Nolte, J. T., Gerassimenko, M., Krieger, A. S., and Petrasso, R. D.: 1979, Solar Phys. 62, 123.Google Scholar
  34. Ohki, K.: 1975, Solar Phys. 45, 435.Google Scholar
  35. Petschek, H. E.: 1964, in W. N. Hess (ed.), AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, p. 425.Google Scholar
  36. Podgorny, A. I. and Syrovatsky, S. L.: 1981, Soviet J. Plasma Phys. 7, 580 (English translation).Google Scholar
  37. Poletto, G. and Kopp, R. A.: 1986, in D. F. Neidig (ed.), The Lower Atmosphere of Solar Flares, National Solar Observatories, Sacramento Peak, NM, p. 453.Google Scholar
  38. Priest, E. R.: 1982a, Solar Phys. 86, 33.Google Scholar
  39. Priest, E. R.: 1982b, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland, p. 73.Google Scholar
  40. Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, Astrophys. J. 220, 643.Google Scholar
  41. Rust, D. M. and Bar, V.: 1973, Solar Phys. 33, 445.Google Scholar
  42. Schmieder, B., Forbes, T. G., Malherbe, J. M., and Machado, M. E.: 1987, Astrophys. J. 317, 956.Google Scholar
  43. Scholer, M.: 1987, J. Geophys. Res. 92, 12425.Google Scholar
  44. Soward, A. M.: 1982, J. Plasma Phys. 28, 415.Google Scholar
  45. Soward, A. M. and Priest, E. R.: 1982, J. Plasma Phys. 28, 335.Google Scholar
  46. Sturrock, P. A.: 1966, Nature 211, 695.Google Scholar
  47. Sturrock, P. A.: 1968, in K. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’, IAU Symp. 35, 471.Google Scholar
  48. Sturrock, P. A.: 1972, in R. Ramaty and R. G. Stone (eds.), High Energy Phenomena on the Sun, NASA, p.3.Google Scholar
  49. Švestka, Z. F., Fontenla, J. M., Machado, M. E., Martin, S. F., Neidig, D. F., and Poletto, G.: 1987, Solar Phys. 108, 237.Google Scholar
  50. Ugai, M.: 1987, Geophys. Res. Letters 14, 103.Google Scholar
  51. Withbroe, G. L.: 1978, Astrophys. J. 225, 641.Google Scholar
  52. Yang, C.-K. and Sonnerup, B. U. Ö.: 1976, Astrophys. J. 206, 570.Google Scholar
  53. Zirin, H.: 1986, in D. F. Neidig (ed.), The Lower Atmosphere of Solar Flares, National Solar Observatories, Sacramento Peak, NM, p. 78.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • T. G. Forbes
    • 1
  • J. M. Malherbe
    • 1
  • E. R. Priest
    • 2
  1. 1.Section de MeudonObservatoire de ParisMeudonFrance
  2. 2.Dept. of MathematicsUniversity of St. AndrewsScotland

Personalised recommendations