The Histochemical Journal

, Volume 25, Issue 7, pp 469–477

Integrins: cell adhesives and modulators of cell function

  • Fred T. Bosman
Review
  • 46 Downloads

Summary

Integrins encompass a family of cell-surface molecules which play a crucial role in cell-cell and cell-extracellular matrix interaction. Of these heterodimeric transmembrane glycoproteins (consisting of an α and β chain) as yet at least 20 different types have been described, all with a different pattern of reactivity with extracellular matrix components. In this review the cell and tissue distribution of the integrins is discussed, with special emphasis on immunohistochemical localization of the β1 integrins and the α6β4 integrin. The β1 integrins comprise a subfamily in which eight α chains combine with one β (the β1) chain. The α2β1, α3β1 and α6β1 and the α6β4 integrins are expressed on a wide variety of epithelia on the basolateral surface or exclusively on the basal surface facing the basement membrane (e.g. α6β1 and α6β4). Leucocyte integrins, which share a common α2 chain, occur almost exclusively on white blood cells and their precursors. The vitronectin receptors, which share a common αv chain, occur in a wide variety of cell types. Integrins play a major role in the interaction of the cell with the extracellular matrix in order to create and maintain tissue architecture. It has become clear, however, that through integrin-ligand interaction cell function is also modulated. Furthermore, in pathological conditions integrins play a role of some significance. Integrins mediate leucocyte traffic in developing inflammatory processes and function in neoplastic growth when it comes to invasion and metastasis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abecassis, J., Millon-Collard, R., Klein-Soyer, C., Nicora, F., Fricker, J., Beretz, A., Eber, M., Muller, D. & Cazenave, J. (1987) Adhesion of human breast cancer cell line MCF-7 to human vascular endothelial cells in culture: enhancement by activated platelets. Int. J. Cancer 40, 525–31.Google Scholar
  2. Akiyama, S. K., Yamada, S. S. & Yamada, K. M. (1989) Analysis of the role of glycosylation of the human fibronectin receptor. J. Biol. Chem. 264, 18,011–8.Google Scholar
  3. Albelda, S. M. & Buck, C. A. (1990) Integrins and other cell adhesion molecules. J. Cell Biol. 110, 1127.Google Scholar
  4. Albelda, S. M., Mette, S. A., Elder, D. A., Stewart, R., Damjanovich, L., Herlijn, M. & Buck, C. A. (1990) Integrin cell-substratum adhesion receptor distribution in malignant melanoma: association of β3 integrin subunit expression with tumor progression. Cancer Res. 50, 6757–64.Google Scholar
  5. Aumailley, M., Gerl, M., Sonnenberg, A., Deutzmann, R. & Timpl, R. (1990) Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment P1. FEBS Lett. 262, 82–6.Google Scholar
  6. Bodary, S. C. & Mclean, J. W. (1990) The integrin beta I subunit associates with the vitronectin receptor alpha v subunit to form a novel vitronectin receptor for a human embryonic kidney cell line. J. Biol. Chem. 265, 5938–41.Google Scholar
  7. Bray, P. F., Leung-I, C. S. & Shuman, M. A. (1990) Human platelets and megakaryocytes contain alternately spliced glycoprotein IIb mRNAS. J. Biol. Chem. 265, 9587–90.Google Scholar
  8. Buck, C. A., Albelda, S., Damjanovich, L., Edelman, J., Shi, D. & Solowska, J. (1990) Immunohistochemical and molecular analysis of beta 1 and beta 3 integrins. Cell Differ. Develop. 32, 189–202.Google Scholar
  9. Burridge, K., Fath, K., Kelly, T., Nuckolls, G. & Turner, C. (1988) Focal adhesions: transmembrane junction between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4, 487–525.Google Scholar
  10. Carter, W. G., Ryan, M. C. & Gahr, P. J. (1991) Epiligrin, a new adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membranes. Cell 65, 599–610.Google Scholar
  11. Chammas, R. & Brentani, R. (1991) Integrins and metastases: an overview. Tumor Biol. 12, 309–20.Google Scholar
  12. Cheresh, D. A., Smith, J. W., Cooper, H. M. & Quaranta, V. (1989a) A novel vitronectin receptor integrin (αvβx) is responsible for distinct adhesive properties of carcinoma cells. Cell 57, 59–69.Google Scholar
  13. Cheresh, D. A., Berliner, S. A., Vincente, V. & Ruggeri, Z. H. (1989b) Recognition of distinct adhesive sites on fibrinogen related integrins on platelets and endothelial cells. Cell 58, 945–53.Google Scholar
  14. Chopra, H., Timar, J., Rong, X., Grossi, I. M., Harfield, J. S., Fligiel, S. E., Finch, C. A., Taylor, J. D. & Honn, K. V. (1992) Is there a role for the tumor cell integrin α116β3 and cytoskeleton in tumor-cell platelet interaction? Clin. Exp. Metastasis 10, 125–37.Google Scholar
  15. Choy, M. Y., Richman, P. I., Horton, M. A. & Macdonald, T. T. (1990) Expression of the VLA family of integrins in the human intestine. J. Pathol. 160, 35–40.Google Scholar
  16. Conforti, G., Zanetti, A., Pasquali-Ronchetti, I., Quaglino, D. Jr., Neyroz, P. & Dejana, E. (1990) Modulation of vitronectin receptor binding by membrane lipid composition. J. Biol. Chem. 265, 4011–19.Google Scholar
  17. Cotran, R. S. (1987) New roles for the endothelium in inflammation and immunity. Am. J. Pathol. 129, 407–13.Google Scholar
  18. D'Ardenne, A. J., Richman, P. I., Horton, M. A., Mcaulay, A. E. & Jordan, S. (1991) Co-ordinate expression of the alpha-6 integrin laminin receptor sub-unit and laminin in breast cancer. J. Pathol. 165, 213–20.Google Scholar
  19. De LaHera, A., Alvarez-Mon, M., Sanchez-Madrid, F., Marinez, A. C. & Durantez, A. (1988) Co-expression of Mac-1 and p150.95 on CD5 + B cells. Structural and function characterisation in a human chronic lymphocytic leukaemia. Eur. J. Immunol. 18, 1131–34.Google Scholar
  20. Flohil, C., Dinjens, W. M. N. & Bosman, F. T. Modulations of integrin expression by differentiation in HT 29 and CaCO2 human colon carcinoma cells (submitted).Google Scholar
  21. Freed, E., Gailit, J., Van DerGeer, P., Ruoslahti, E. & Hunter, T. (1989) A novel integrin beta subunit is associated with the vitronectin receptor alpha subunit (alpha v) in a human osteosarcoma cell line and is a substrate for protein kinase C. EMBO J. 8, 2955–65.Google Scholar
  22. Gailit, J. & Ruoslahti, E. (1988) Regulation of the vitronectin receptor affinity by divalent cations. J. Biol. Chem. 263, 12,927–32.Google Scholar
  23. Gardner, J. M. & Hynes, R. O. (1985) Interaction of fibronectin with its receptor on platelets. Cell 42, 439–48.Google Scholar
  24. Gismondi, A., Morrone, S., Humphries, M. J., Piccoli, M., Frati, L. & Santoni, A. (1991) Human natural killer cells express VLA-4 and VLA-5, which mediate their adhesion to fibronectin. J. Immunol. 146, 384–92.Google Scholar
  25. Gould, V. E., Koukoulis, G. K. & Virtanen, I. (1990) Extracellular matrix proteins and their receptors in the normal hyperplastic and neoplastic breast. Cell Differ. Develop. 32, 409–16.Google Scholar
  26. Hall, P. A., Coates, P., Lemoine, N. R. & Horton, M. A. (1991) Characterization of integrin chains in normal and neoplastic human pancreas. J. Pathol. 165, 33–41.Google Scholar
  27. Hemler, M. E. (1990) VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu. Rev. Immunol. 8, 365–400.Google Scholar
  28. Hirst, R., Horwitz, A., Buck, C. & Rohrschneider, L. (1986) Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc. Natl Acad. Sci. USA 83, 6470–4.Google Scholar
  29. Hogervorst, F., Kuikman, I., VonDem Borne, A. E. G. Kr. & Sonnenberg, A. (1990) Cloning and sequence analysis of β-4 cDNA: an integrin subunit that contains a unique 118 kD cytoplasmic domain. EMBO J. 9, 765–70.Google Scholar
  30. Horton, M. (1990) Current status review: vitronectin receptor: tissue specific expression or adaptation to culture. Int. J. Exp. Pathol. 71, 741–59.Google Scholar
  31. Humphries, M. J. (1992) Peptide recognition motifs involved in the binding of integrins to their ligands. Kidney Int. 41, 645–9.Google Scholar
  32. Humphries, M. J., Olden, K. & Yamada, K. M. (1986) A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 233, 467–70.Google Scholar
  33. Humphries, M. J., Komoriya, A., Akiyama, S. K., Olden, K. & Yamada, K. M. (1987) Identification of two distinct regions of the type III connecting segment of human plasma fibronectin that promote cell type-specific adhesion. J. Biol. Chem. 262, 6886–92.Google Scholar
  34. Hynes, R. O. (1987) Integrins: a family of cell surface receptors. Cell 48, 549–54.Google Scholar
  35. Jennings, L. K. & Phillips, D. R. (1982) Purification of glycoproteins IIb and III from human platelet plasma membranes and characterization of a calcium-dependent glycoprotein IIb–III. J. Biol. Chem. 257, 10,458–66.Google Scholar
  36. Jones, J. L., Critchley, D. R. & Walker, R. A. (1992) Alteration of stromal protein and integrin expression in breast-α marker of premalignant change? J. Pathol. 167, 399–406.Google Scholar
  37. Jutila, M. A. (1992) Leukocyte traffic to sites of inflammation. APMIS 100, 191–201.Google Scholar
  38. Keizer, G. D., Borst, J. & Visser, W. (1987) Membrane glyco-protein p150.95 of human cytotoxic T cell clones is involved in conjugative formation with target cells. J. Immunol. 138, 3130–6.Google Scholar
  39. Koretz, K., Schlag, P., Boumsell, L. & Möller, P. (1991) Expression of VLA-α2, VLA-α6 and VLA-β1 chains in normal mucosa and adenomas of the colon, and in colon carcinomas and their liver metastases. Am. J. Pathol. 138, 741–50.Google Scholar
  40. Kurzinger, K., Reynolds, T. & Germain, R. J. (1981) A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression and structure. J. Immunol. 127, 596–602.Google Scholar
  41. Lauweryns, B., Van DenOord, J. J., Volpes, R., Foets, B. & Misotten, L. (1991) Distribution of very late activation integrins in the human cornea. An immunohistochemical study using monoclonal antibodies. Invest. Ophthalmol. Vis. Sci. 32, 2079–85.Google Scholar
  42. Miller, L. J., Scharting, R. & Springer, T. A. (1986) Regulated expression of the Mac-1, LFA-1, p150.95 glycoprotein family during leucocyte differentiation. J. Immunol. 137, 2891–900.Google Scholar
  43. Pignatelli, M., Smith, M. & Bodmer, W. (1990) Low expression of collagen receptors in normal mucosa and adenomas of the colon and in colon carcinomas and their liver metastases. Br. J. Cancer 61, 636–8.Google Scholar
  44. Plow, E. F., Srouji, A. R., Meyer, D., Marguerie, G. & Ginsberg, M. H. (1984) Evidence that three adhesive proteins interact with a common recognition site on activated platelets. J. Biol. Chem. 259, 5388–91.Google Scholar
  45. Pytela, R., Pierschbacher, M. D. & Ruoslahti, E. (1985) A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine aspartic acid adhesion sequence derived from fibronectin. Proc. Natl Acad. Sci. USA 82, 5766–70.Google Scholar
  46. Rahilly, M. A. & Fleming, S. (1992) Differential expression of integrin alpha chains by renal epithelial cells. J. Pathol. 167, 327–34.Google Scholar
  47. Ruoslahti, E. & Giancotti, F. G. (1989) Integrins and tumor cell dissemination. Cancer Cells 1, 119–26.Google Scholar
  48. Ruoslahti, E. & Pierschbacher, M. D. (1987) New perspectives in cell adhesion: RGD and integrins. Science 238, 491–7.Google Scholar
  49. Rutishauser, V. & Goridis, C. (1986) N-CAM: the molecule and its genetics. Trends Genet. 2, 72–6.Google Scholar
  50. Ryynänen, J., Jaakkola, S., Engvall, E., Peltonen, J. & Uitto, J. (1991) Expression of β4 integrins in human skin: comparison of epidermal distribution with β1-integrin epitopes, and modulation by calcium and vitamin D3 in cultured keratinocytes. J. Invest. Dermatol. 97, 562–7.Google Scholar
  51. Schwarting, R., Stein, H. & Wang, C. Y. (1985) The monoclonal antibodies anti S-HCL 1 (anti Leu 14) and anti S-HCL 3 (anti Leu M5) allow the diagnosis of hairy cell leukaemia. Blood 65, 974–83.Google Scholar
  52. Shimizu, Y. & Shaw, S. (1991) Lymphocyte interactions with extracellular matrix. FASEB J. 5, 2292–9.Google Scholar
  53. Shimizu, Y., VanSevenster, G. A., Horgan, K. J. & Shaw, S. (1990) Regulated expression and function of three VLA (β1) integrin receptors on T cells. Nature 345, 250–3.Google Scholar
  54. Shuman, M. A., Pytela, R. & Small, E. (1992) Characterization of integrin expression in human cancer cell lines and regulation by cytokines. J. Cell Biochem. 16F, 142.Google Scholar
  55. Smith, J. W., Vestal, D. J., Irwin, S. V., Burke, T. A. & Cheresh, D. A. (1990) Purification and functional characterisation of integrin alpha v beta 5. An adhesion receptor for vitronectin. J. Biol. Chem. 265, 11,008–13.Google Scholar
  56. Sonnenberg, A. (1990) The α4β1 and α6β4 integrins: structure, function and biochemical properties. Thesis, University of Amsterdam.Google Scholar
  57. Sonnenberg, A., Hogervorst, F., Ogterop, A. & Veltman, E. M. (1988) Identification and characterization of a novel antigen complex on mouse mammary tumor cells using a monoclonal antibody against glycoprotein Ic. J. Biol. Chem. 263, 14,030–8.Google Scholar
  58. Staatz, W. D., Rajpara, S. M., Wayner, E. A., Carter, W. G. & Santoro, S. A. (1989) The membrane glycoprotein Ia–IIb (VLA-2) complex mediates the Mg++ dependent adhesion of platelets to collagen. J. Cell Biol. 108, 1917–24.Google Scholar
  59. Staehelin, L. A. & Hull, B. E. (1978) Junctions between living cells. Sci. Am. 238, 141–152.Google Scholar
  60. Takeichi, M. (1988) The Cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102, 639–55.Google Scholar
  61. VanKuppevelt, T. H. M. S. M., Languino, L. R., Gailit, J. O., Suzuki, S. & Ruoslahti, E. (1989) An alternative cytoplasmic domain of the integrin β3 subunit. Proc. Natl Acad. Sci. USA 86, 5415–18.Google Scholar
  62. Vestweber, D. (1992) Selectins: cell surface lectins which mediate the binding of leucocytes to endothelial cells. Semin. Cell. Biol. 2, 211–20.Google Scholar
  63. Virtanen, I., Korhonen, M., Kariniemi, A.-L, Gould, V. E., Laitinen, L. & Ylänne, J. (1990) Integrins in human cells and tumors. Cell Differ. Develop. 32, 215–28.Google Scholar
  64. Vogel, B. E., Tarone, G., Giancotti, F. G., Gailit, J. & Ruoslahti, E. (1990) A novel fibronectin receptor with an unexpected subunit composition (αvβ1). J. Biol. Chem. 265, 5934–7.Google Scholar
  65. Volpes, R., Van DenOord, J. J. & Desmet, V. J. (1991) Distribution of the VLA family of integrins in normal and pathological human liver tissue. Gastroenterology 101, 200–6.Google Scholar
  66. Von DerMark, K., Von DerMark, H. & Goodman, S. (1992) Cellular responses to extracellular matrix. Kidney Int. 41, 632–40.Google Scholar
  67. Walsh, L. J. & Murphy, G. F. (1992) Role of adhesion molecules in cutaneous inflammation and neoplasia. J. Cutan. Pathol. 19, 161–71.Google Scholar
  68. Werb, Z., Tremble, P. & Damsky, C. H. (1990) Regulation of extracellular matrix degradation by cell-matrix interactions. Cell Diff. Devel. 32, 299–306.Google Scholar
  69. Williams, A. F. & Barclay, A. N. (1988) The immunoglobulin superfamily-domains for cell surface recognition. Annu. Rev. Immunol. 6, 381–406.Google Scholar
  70. Yong, K. & Khwaja, A. (1990) Leucocyte cellular adhesion molecules. Blood Reviews 4, 211–25.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Fred T. Bosman
    • 1
  1. 1.Department of PathologyErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations