Documenta Ophthalmologica

, Volume 60, Issue 3, pp 235–291 | Cite as

Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?

  • Peter M. Bischoff
  • Robert W. Flower


The choroidal circulation can be studied by an angiographic technique which utilizes near-infrared light wavelengths and a biocompatible dye, indocyanine green (CardiogreenR). Near-infrared light is less absorbed than visible light by the pigment epithelium and the macular xanthophyll, and indocyanine green (ICG) dye doesn't leak from the choriocapillaris as sodium fluorescein dye typically does. Due to the high rate of choroidal blood flow, a fundus camera adapted with special filters and a continuous light source was used in order to make angiograms at the rate of 10 per second.

Our experience at the Wilmer Institute and the Eye Clinic at St. Gallen includes 180 choroidal angiograms of normal volunteers and approximately 500 choroidal angiograms of patients with several fundus diseases, mainly senile macular degeneration, diabetic retinopathy and choroidal tumors. Although many of our results are preliminary, we present them to demonstrate the potential applications of this method in ophthalmology. Some factors which may have inhibited an extensive propagation of clinical choroidal angiography in the past are also discussed.

Key words

choroidal circulation indocyanine green infrared angiography senile macular degeneration diabetic retinopathy choroidal nevus choroidal melanoma choroidal hemangioma presumed histoplasmosis syndrome Best's macular degeneration retinal and choroidal thrombosis retinitis pigmentosa vitreous hemorrhage papilledema retrolental fibroplasia myopia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alm A (1983) Microcirculation of the eye. In: Mortillaro NA (ed): The physiology and pharmacology of the microcirculation. New York, Academic PressGoogle Scholar
  2. Amalric PM (1973) Choroidal vessel occlusive syndromes - clinical aspects. Trans Amer Acad Ophthal Otolaryng 77:291–299Google Scholar
  3. Amalric P (1974) Veines choroidiennes, état normal et pathologique. Ann Oculist (Paris) 207:161–183Google Scholar
  4. American National Standards Institute (ANSI) (1976) Safe Use of Lasers, Standard Z-136.1. New York, ANSIGoogle Scholar
  5. Ansari A, Lambrecht RM, Packer S, Atkins HL, Redvanly CS and Wolf AP (1975) Note on the distribution of Iodine-123-labeled Indocyanine Green in the Eye. Invest Ophthal 14:780–782Google Scholar
  6. Apple DJ and Naumann GOH (1980) Missbildungen und Anomalien des ganzen Auges. In: Naumann GOH (ed): Pathologie des Auges. Berlin, Springer-Verlag, pp 57–87Google Scholar
  7. Araki M (1976) Observations on the corrosion casts of the choriocapillaris. Acta Soc Ophthal Jpn 80:315–326Google Scholar
  8. Archer D, Krill AF and Newell FW (1970) Fluorescein studies of normal choroidal circulation, Amer J Ophthal 69:543–554Google Scholar
  9. Archer DB, Krill AE and Ernest JT (1972) Choroidal vascular aspects of degenerations of the retinal pigment epithelium. Trans Ophthal Soc UK 92:187–207Google Scholar
  10. Bacin F, Buffet JM and Mutel N (1981) Angiographie par absorption, en infrarouge, au Vert Indocyanine. Aspects chez le sujet normal et dans les tumeurs choroidiennes. Bull Soc Ophtal Fr 81:315–319Google Scholar
  11. Behrendt T and Wilson LA (1965) Spectral reflectance photography of the retina. Amer J Ophthal 59:1079–1088Google Scholar
  12. Benson RC and Kues HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163Google Scholar
  13. Bill A (1981) Ocular Circulation. In: Moses RA (ed): Adler's Physiology of the Eye, 7th ed. St. Louis, Mosby, pp 184–203Google Scholar
  14. Bischoff PM and Flower RW (1983) High pressure in choroidal arteries as a possible pathogenetic mechanism in senile macular degeneration. Amer J Ophthal 96:398–399Google Scholar
  15. Bischoff PM, Wajer SD and Flower RW (1983) Scanning electron microscopic study of the hyaloid vascular system in newborn mice exposed to 02 and C02. Graefe's Arch Clin Exp Ophthal 220:257–263Google Scholar
  16. Bloome MA (1980) Fluorescein angiography: Risks. Vision Res 20:1083–1097Google Scholar
  17. Buffet JM, Bacin F and Audouin MC (1979) Une téchnique simple de-angiographie en infra-rouge au Vert d'Indocyanine. Bull Soc Ophtal Fr 79:209–211Google Scholar
  18. Carski TR, Staller BJ, Hepner G, Banka V and Finney RA (1978) Adverse reactions after administration of indocyanine gree. J Amer Med Ass 240:635Google Scholar
  19. Cherrick GR, Stein SW, Leevy CM and Davidson CS (1960) Indocyanine Green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 39:592–600Google Scholar
  20. Chopdar A, Turk AM and Hill DW (1978) Fluorescent infra-red angiography of the fundus oculi using indocyanine green dye. Trans Ophthal Soc UK 98:142–146Google Scholar
  21. Colenbrander MC (1975) Hydrostatische Druckverhältinisse im Auge. Fluorescein erscheint erst in der Aderhaut und dann in der Netzhaut. Wie kann man das erklären? Klin Mbl Augenheilk 167:94–97Google Scholar
  22. Craandijk A and Van Beek CA (1976) Indocyanine green fluorescence angiography of the choroid. Brit J Ophthal 60:377–385Google Scholar
  23. David NJ (1971) Infra-red absorption fundus angiography. In: Proc. Int. Symp. Fluorescein Angiography Albi, 1969. Basel, Karger, pp 189–192Google Scholar
  24. De Venecia G, Wallow I, Houser D and Wahlstrom M (1980) The eye in accelerated hypertension. I. Elschnig's spots in nonhuman primates. Arch Ophthal 98:913–918Google Scholar
  25. Ditzel J (1976) Oxygen transport impairment in diabetes. Diabetes 25:832–838Google Scholar
  26. Donders FC (1855) Beiträge zur pathologischen Anatomie des Auges. Graefes Arch Ophthal I (2):106–118Google Scholar
  27. Engerman R, Bloodworth JMB and Nelson S (1977) Relationship of microvascular disease in diabetes to metabolic control. Diabetes 26:760–769Google Scholar
  28. Enzmann V and Ruprecht KW (1982) Zwischenfälle bei der Fluoreszenzangiographie der Retina. Klin Mbl Augenheilk 181:235–239Google Scholar
  29. Ernest JT (1977) The effect of systolic hypertension on Rhesus monkey eyes after ocular sumpathectomy. Amer J Ophthal 84:341–344Google Scholar
  30. Flower RW (1972) Infrared absorption angiography of the choroid and some observations on the effects of high intraocular pressures. Amer J Ophthal 74:600–614Google Scholar
  31. Flower RW (1973) Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye. Invest. Ophthal 12:881–895Google Scholar
  32. Flower RW (1974) Choroidal angiography using indocyanine green dye: A review and progress report. Ophthal Digest 36:18–27Google Scholar
  33. Flower RW (1976) High speed human choroidal angiography using indocyanine green dye and a continuous light source. Docum Ophthal Proc Ser 9:59–66Google Scholar
  34. Flower RW (1977) Simple adaptors for fast conversion of a fundus camera for rapid-sequence ICG fluorescence choroidal angiography. J Biol Photogr 45:43–47Google Scholar
  35. Flower RW (1980) Choroidal fluorescent dye filling patterns. A comparison of high speed indocyanine green and fluorescein angiograms. Int Ophthal 2:143–149Google Scholar
  36. Flower RW and Hochheimer BF (1972) Clinical infrared absorption angiography of the choroid. Amer J Ophthal 73:458–459Google Scholar
  37. Flower RW and Hochheimer BF (1973) A clinical technique and apparatus for simultaneous angiography of the separate retinal and choroidal circulations. Invest Ophthal 12:248–261Google Scholar
  38. Flower RW and Hochheimer BF (1976) Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J 138:33–42Google Scholar
  39. Flower RW, Speros P and Kenyon LR (1977) Electroretinographic changes and choroidal defects in a case of central retinal artery occlusion. Amer J Ophthal 83:451–459Google Scholar
  40. Fox IJ and Wood EH (1960) Indocyanine green: Physical and physiologic properties. Mayo Clin Proc 35:732–744Google Scholar
  41. François P, Turut P and Delannoy C (1977) L'angiogluorographie choroidienne à l'indocyanine. Bull Soc Ophtal Fr 77:971–972Google Scholar
  42. Friedman E, Smith TR, Kuwabara T and Beyei CK (1964) Choroidal vascular patterns in hypertension. Arch Ophthal 71:842–850Google Scholar
  43. Garner A (1982) Vascular disorders. In: Garner A and Klintworth GK (eds): Pathobiology of Ocular Disease, part B. New York, Marcel Dekker, pp 1479–1575Google Scholar
  44. Gass JDM (1977) Problems in the differential diagnosis of choroidal nevi and malignant melanomas (33rd Edward Jackson Memorial Lecture). Amer J Ophthal 83:299–323Google Scholar
  45. Geeraets WJ, Williams RC, Chan G, Ham WT, Guerry D and Schmidt FH (1960) The loss of light energy in retina and choroid. Arch Ophthal 64:606–615Google Scholar
  46. Geltzer AI and Berson EL (1969) Fluorescein angiography of hereditary retinal degeneration. Arch Ophthal 81:776–782Google Scholar
  47. Goldmann H (1932) Experimentelle Untersuchungen über die Genese des Feuerstares: I. Mitteilung. Graefes Arch Ophthal 128:413–446Google Scholar
  48. von Graefe A (1954) Vorwort. Graefes Arch Ophthal I:III-XGoogle Scholar
  49. Green WR (1980) Clinicopathologic studies of senile macular degeneration. In: Nicholson DH (ed): Ocular Pathology Update. New York, Masson, pp 115–144Google Scholar
  50. Habozit F (1976) Angiographie choroidienne au vert d'indocyanine. Thése Lyon MédGoogle Scholar
  51. Haining WM (1981) Video fundoscopy and fluoroscopy. Brit J Ophthal 65:702–706Google Scholar
  52. Hayashi K, Nakase Y, Nishiyama A, Tokoro T and Yoshida T (1982) Indocyanine Green Fluorescence Angiography, Report 2. Studies on New Interference Filters. Acta Soc Ophthal Jpn 86:1532–1539Google Scholar
  53. Hayreh SS (1975) Segmental nature of the choroidal vasculature. Brit J Ophthal 59:631–648Google Scholar
  54. Hayreh SS and Baines JAB (1973) Occlusion of the vortex veins. Brit J Ophthal 57:217–238Google Scholar
  55. Hepburn ML (1912) Inflammatory and vascular diseases of the choroid. Trans Ophthal Soc UK 32:361–386Google Scholar
  56. Hidayat AA and Fine BS (1983) Diabetic choroidopathy. Invest Ophthal Vis Sci 24 (suppl):247Google Scholar
  57. Hochheimer BF (1971) Angiography of the retina with Indocyanine Green. Arch Ophthal 86:564–565Google Scholar
  58. Hochheimer BF (1979) A dye for experimental choroidal angiography. Exp Eye Res 29:141–143Google Scholar
  59. Hogan MJ (1961) Electron microscopy of the human choroid. III. The blood vessels. Amer J. Ophthal 51:1084–1097Google Scholar
  60. Hyvärinen L and Flower RW (1980) Indocyanine Green fluorescence angiography. Acta Ophthal 58:528–538Google Scholar
  61. Hyvärinen L, Maumenee AE, George T and Weinstein GW (1969) Fluorescein angiography of the choriocapillaris. Amer J Ophthal 67:653–666Google Scholar
  62. Hyvärinen L, Maumenee AE, Kelley J and Cantollino S (1971) Fluorescein angiographic findings in retinitis pigmentosa. Amer J Ophthal 71:17–26Google Scholar
  63. Iseki K, Onoyama K, Fujimi S and Omae T (1980) Shock caused by Indocyanine Green dye in chronic hemodialysis patients (letter). Clin Nephrol 14:210Google Scholar
  64. Ketterer SG, Wiegard BD and Rapaport E (1960) Hepatic uptake and biliary excretion of Indocyanine Green and its use in estimation of hepatic blood flow in dogs. Amer J Physiol 199:481–484Google Scholar
  65. Klien BA (1968) Ischemic infarcts of the choroid (Elschnig spots). Amer J Ophthal 66:1069–1074Google Scholar
  66. Kogure K and Choromokos E (1969) Infrared absorption angiography. J Appl Physiol 26:154–157Google Scholar
  67. Kogure K, David NJ, Yamanouchi V and Choromokos E (1970) Infrared absorption angiography of the fundus circulation. Arch Ophthal 83:209–214Google Scholar
  68. Krey HF (1975) Segmental vascular patterns of the choriocapillaris. Amer J Ophthal 80:198–202Google Scholar
  69. Leber T (1903) Die Circulations- und Ernährungsverhältnisse des Auges. In: Graefe-Saemisch: Handbuch der gesamten Augenheilkunde, 2. Aufl., Bd.2/2. Leipzig, Verlag W. Engelmann, pp 1–534Google Scholar
  70. Leevy CM, Smith F and Kierman T (1976) Liver function tests. In: Bochus, HL (ed): Gastroenterology, 3rd ed., vol. 3. Philadelphia, Saunders, pp 68–82Google Scholar
  71. Leibowitz HM, Krueger DE and Maunder LR et al. (1980) The Framingham Eye Study Monograph. Surv Ophthal 24 (Suppl):334–610Google Scholar
  72. Lutty GA (1978) The acute intravenous toxicity of biological stains, dyes, and other fluorescent substances. Toxicol Appl Pharmacol 44:225–249Google Scholar
  73. Lutty GA (1979) An intraperitoneal survey of biological stains, dyes, and other fluorescent substances. Bull Nippon Kanhoh-Shihiso Kenkyusho 50:25–50Google Scholar
  74. Macular Photocoagulation Study Group (1982) Argon laser photocoagulation for senile macular degeneration, Results of a randomized clinical trial. Arch Ophthal 100:912–918Google Scholar
  75. Müller H (1856) Anatomische Beiträge zur Ophthalmologie. Graefes Arch Ophthal II (2):1–69Google Scholar
  76. Naumann GOH (1980) Uvea. In: Naumann GOH (ed): Pathologie des Auges. Berlin, Springer-Verlag, pp 408–500Google Scholar
  77. Novotny HR and Alvis DL (1961) A method of photographic fluorescence in circulating blood in the human retina. Circulation 24:82–86Google Scholar
  78. Nyama M, Ohkuma H, Itotagawa S, Koshibu A, Uraguchi K and Miki K (1980) Pathology of choroidal circulatory disturbance. I. Angioarchitecture of the choroid, observation on plastic cast preparation. Acta Soc Ophthal Jpn 84:1893–1909Google Scholar
  79. Orth DH, Patz A and Flower RW (1976) Potential clinical applications of Indocyanine Green choroidal angiography - Preliminary report. Eye Ear Nose Throat Mon 55:4–11Google Scholar
  80. Par JC, Hodge JV, Clemett RS and Knight FH (1968) Fluorescence appearance time in retinal and choroidal vessels. Trans Ophthal Soc New Zealand 20:88–101Google Scholar
  81. Patz A, Flower RW, Klein ML, Orth DH, Fleischman JA and McLeod S (1976) Clinical application of Indocyanine Green angiography. Docum Ophthal Proc Ser 9:245–251Google Scholar
  82. Patz A (1982) Clinical and experimental studies on retinal neovascularization (XXXIX Edward Jackson Memorial Lecture). Amer J Ophthal 94:715–743Google Scholar
  83. Pitts DG, Cullen AP and Dayhaw-Barker P (1980) Determination of ocular threshold levels for infrared radiation cataractogenesis, DHHS (NIOSH) publ 80–121. Washington, U.S. Government Printing Office, pp 1–55Google Scholar
  84. Potts AM (1966) An hypothesis on macular disease. Trans Amer Acad Ophthal Otolaryng 70:1058–1062Google Scholar
  85. Ring HG and Fujino T (1967) Observations on the anatomy and pathology of the choroidal vasculature. Arch Ophthal 78:431–444Google Scholar
  86. Risco JM, Grimson BS and Johnson PT (1981) Angioarchitecture of the ciliary artery circulation of the posterior pole. Arch Ophthal 99:864–868Google Scholar
  87. Saari M (1977) Disciform detachment of the macula. II. Fluorescein and Indocyanine Green fluorescence angiographic findings in juvenile hemorrhagic macular choroidopathy. Acta Ophthal 55:530–538Google Scholar
  88. Sattler H (1976) Ueber den feineren Bau der Chorioidea des Menschen nebst Beiträgen zur pathologischen und vergleichenden Anatomie der Aderhaut. Graefes Arch Ophthal 22 (2):1–100Google Scholar
  89. Sautter H, Lüttewitz W and Naumann GOH (1974) Die Infrarot-Photographie in der Differentialdiagnose pigmentierter tumorverdächtiger Fundusveränderungen. Klin Mbl Augenheilk 164:597–602Google Scholar
  90. Schatz H, Burton TC, Yannuzzi LA and Rabb MF (1978) Subretinal Neovascularization. In: Interpretation of Fundus Fluorescein Angiography. St. Louis, Mosby, pp 440–452Google Scholar
  91. Shabetai R and Adolph RJ (1980) Principles of cardiac catheterization. In: Fowler NO (ed): Cardiac diagnosis and treatment, 3rd ed. Hagerstown, Haper & Row, pp 117–119Google Scholar
  92. Shimizu K and Ujiie K (1978) The choroid. In: Structure of Ocular Vessels. Tokyo, Igaku-Shoin Med. Pub., pp 50–92Google Scholar
  93. Sliney DH (1982) Optical radiation safety. Lighting Res Technol 14:142–150Google Scholar
  94. Sliney DH and Wolbarsht ML (1980) Safety standards and measurement techniques for high intensity light sources. Vision Res 20:1133–1141Google Scholar
  95. Speiser P and Bischoff P (1984) Die sogenannte Chorioretinopathia centralis serosa im Lichte der Aderhautangiographie. Klin. Mbl Augenheilk 185:378–380Google Scholar
  96. Spitznas M (1974) The fine structure of the chorioretinal border tissues of the adult human eye. Adv Ophthal 28:78–174Google Scholar
  97. The Diabetic Retinopathy Study Research Group (1978) Photocoagulation treatment of proliferative diabetic retinopathy: The second report of Diabetic Retinopathy Study findings. Ophthalmology 85:82–105Google Scholar
  98. Tokoro T, Hayashi K, Muto M, Asahara N, Sato K and Yoshida T (1976) Studies on choroidal circulation, Report I: Fundamental studies on the infrared absorption angiography. Jpn J Ophthal 30:173–179Google Scholar
  99. Torczynski E (1982) Choroid and Suprachoroid. In: Duane TD and Jaeger EA (eds): Biomedical Foundations of Ophthalmology, Vol. 1, chap. 22. Philadelphia, Harper & Row, pp 1–33Google Scholar
  100. Tripathi RC (1974) Fine structure of mesodermal tissues of the human eye. Trans Ophthal Soc UK 94:663–695Google Scholar
  101. U.S. Pharmacopeia (1980) Indocyanine Green. In: Nat. Formulary, 15th ed., Rockville, Md., United States Pharmacopeial Convention, p 399Google Scholar
  102. Vogt A (1919) Experimentelle Erzeugung von Katarakt durch isoliertes kurzwelliges Ultrarot, dem Rot beigemischt ist. Klin Mbl Augenheilk 63:230–231Google Scholar
  103. Wagner H. (1938) Pathologische und therapeutische Wirkungen des penetrierenden Ultrarot auf das Auge. Graefes Arch Ophthal 138:486–514Google Scholar
  104. Wald G (1949) The photochemistry of vision. Docum Ophthal 3:94–134Google Scholar
  105. Webb RH, Hughes GW, Timberlake GT and Mainster MA (1983) The scanning laser ophthalmoscope - summary of the first generation instrument. Invest Ophthal Vis Sci 24(suppl): 122Google Scholar
  106. Weinstein GW, Maumenee AE and Hyvärinen L (1971) On the pathogenesis of retinitis pigmentosa. Ophthalmologica 162:82–97Google Scholar
  107. Wenzel M (1786) Traité de la cataracte. ParisGoogle Scholar
  108. Wheeler HO, Cranston WI and Mettzer JI (1958) Hepatic uptake and biliary excretion of Indocyanine Green in the dog. Proc Soc Exp Biol Med 99:11–14Google Scholar
  109. Wise GN, Dollery CT and Henkind P (1971) Retinal neovascularization. In: The Retinal Circulation. New York, Harper & Row, pp 265–278Google Scholar
  110. Witschel H and Font RL (1976) Hemangioma of the choroid. A clinicopathologic study of 71 cases and a review of the literature. Surv Ophthal 20:415–431Google Scholar
  111. Wolbarsht ML (1980) Damage to the lens from infrared. In: Wolbarsht ML and Sliney DH (eds); Ocular effects of non-ionizing radiation. Washington. The Society of Photo-Optical Instrumentation Engineers Publ., pp 121–142Google Scholar
  112. Wolff E (1976) Eyeball. In: Warwick R (ed): Eugene Wolff s Anatomy of the Eye and Orbit, 7th ed. London, HK Lewis & Comp, pp 30–180Google Scholar
  113. Wybar KC (1954) Vascular anatomy of the choroid in relation to selective localization of ocular disease. Brit J Ophthal 38:513–527Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • Peter M. Bischoff
    • 1
    • 2
  • Robert W. Flower
    • 2
    • 3
  1. 1.Klinik für Augenkrankheiten, KantonsspitalSt. Gallen
  2. 2.The Wilmer Ophthalmological InstituteSwitzerland
  3. 3.The Applied Physics Laboratory of the Johns Hopkins Hospital and UniversitySwitzerland

Personalised recommendations