Advertisement

Solar Physics

, Volume 84, Issue 1–2, pp 153–167 | Cite as

A dynamo theory of solar flares

  • J. R. Kan
  • S.-I. Akasofu
  • L. C. Lee
Articles

Abstract

It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038.

Keywords

Flare Field Line Solar Flare Radio Emission Magnetic Field Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasofu, S.-I.: 1979, Solar Phys. 64, 333.Google Scholar
  2. Alfvén, H. and Carlqvist, P.: 1967, Solar Phys. 1, 220.Google Scholar
  3. Block, L. P.: 1972, Cosm. Electrodyn. 3, 349.Google Scholar
  4. Cowling, T. G.: 1945, Proc. Roy. Soc. A283, 453.Google Scholar
  5. Dravins, D.: 1974, Solar Phys. 37, 323.Google Scholar
  6. D'Uston, C., Dryer, M., Han, S. M., and Wu, S. T.: 1981, J. Geophys. Res. 86, 525.Google Scholar
  7. Fälthammar, C.-G.: 1978, J. Geomag. Geoelectric. 30, 419.Google Scholar
  8. Farley, Jr., D. T.: 1963, J. Geophys. Res. 68, 6083.Google Scholar
  9. Fejer, J. A.: 1964, J. Geophys. Res. 69, 123.Google Scholar
  10. Fridman, M. and Lemaire, J.: 1980, J. Geophys. Res. 85, 664.Google Scholar
  11. Heyvaerts, J.: 1974, Solar Phys. 38, 419.Google Scholar
  12. Hoyng, P., Brown, J. C, and Beek, F. V.: 1976, Solar Phys. 48, 197.Google Scholar
  13. Kahler, S., Spicer, D., Uchida, Y., and Zirin, H.: 1980, in P. A. Sturrock (ed.), Solar Flares, Colorado Associated University Press, p. 85.Google Scholar
  14. Kan, J. R.: 1975, J. Geophys. Res. 80, 2089.Google Scholar
  15. Kan, J. R.: 1982, Space Sci. Rev. 31, 71.Google Scholar
  16. Kan, J. R. and Lee, L. C.: 1981, in S.-I. Akasofu and J. R. Kan (eds.), Physics of Auroral Arc Formation, Geophys. Monograph Series, AGU, p. 206.Google Scholar
  17. Knight, S.: 1973, Planet. Space Sci. 21, 741.Google Scholar
  18. Knorr, G. and Goertz, C. K.: 1974, Astrophys. Space Sci. 31, 209.Google Scholar
  19. Obayashi, T.: 1975, Solar Phys. 40, 217.Google Scholar
  20. Obayashi, T. and Maeda, K.: 1965, in S. C. Coroniti (eds.), Problems of Atmospheric and Space Electricity, Elsevier Publishing Co., Amsterdam.Google Scholar
  21. Oster, L.: 1968, Solar Phys. 3, 543.Google Scholar
  22. Schlüter, A.: 1951, Z. Naturforschg. 6A, 73.Google Scholar
  23. Sen, H. K. and White, M. L.: 1972, Solar Phys. 23, 146.Google Scholar
  24. Sturrock, P. A.: 1980, in P. A. Sturrock (ed.), Solar Flares, Colorado Associated University Press, p. 411.Google Scholar
  25. Swift, D. W.: 1975, J. Geophys. Res. 80, 2096.Google Scholar

Copyright information

© D. Reidel Publishing Co 1983

Authors and Affiliations

  • J. R. Kan
    • 1
  • S.-I. Akasofu
    • 1
  • L. C. Lee
    • 1
  1. 1.Geophysical Institute, University of AlaskaFairbanks, FairbanksU.S.A.

Personalised recommendations