Advertisement

Water, Air, and Soil Pollution

, Volume 88, Issue 1–2, pp 167–176 | Cite as

Phytoremediation of soil contaminated with low concentrations of radionuclides

  • James A. Entry
  • Nan C. Vance
  • Melinda A. Hamilton
  • Darlene Zabowski
  • Lidia S. Watrud
  • Domy C. Adriano
Article

Abstract

Ecosystems throughout the world have been contaminated with radionuclides by above-ground nuclear testing, nuclear reactor accidents and nuclear power generation. Radioisotopes characteristic of nuclear fission, such as 137Cs and 90Sr, that are released into the environment can become more concentrated as they move up the food chain often becoming human health hazards. Natural environmental processes will redistribute long lived radionuclides that are released into the environment among soil, plants and wildlife. Numerous studies have shown that 137 Cs and 90Sr are not removed from the top 0.4 meters of soil even under high rainfall, and migration rate from the top few centimeters of soil is slow. The top 0.4 meters of the soil is where plant roots actively accumulate elements. Since plants are known to take up and accumulate 137 Cs and 90Sr removal of these radionuclides from contaminated soils by plants could provide a reliable and economical method of remediation. One approach is to use fast growing plants inoculated with mycorrhizal fungi combined with soil organic amendments to maximize the plant accumulation and removal of radionuclides from contaminated soils, followed by harvest of above-ground portion of the plants. High temperature combustion would be used to oxidize plant material concentrating 137 Cs and 90Sr, in ash for disposal. When areas of land have been contaminated with radionuclides are large, using energy intensive engineering solutions to remediate huge volumes of soil is not feasible or economical. Plants are proposed as a viable and cost effective method to remove radionuclides from the soils that have been contaminated by nuclear testing and nuclear reactor accidents.

Keywords

Radionuclide Mycorrhizal Fungus Migration Rate Phytoremediation Temperature Combustion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, S. A.: 1984, Soil Bionutrient Availability, John Wiley and Sons, New York, 398 pp.Google Scholar
  2. Brand, F: 1992, ‘Mixed Associations of Fungi in Ectomycorrhizal Roots’, in Read, D. J., Lewis, D. H., Fitter, A. H. and Alexander, I. J. (eds.), Mycorrhizas in Ecosystems. CAB International Press, 419, pp. 142-150.Google Scholar
  3. Breshears, D. D., Kirchner, T. B. and Whicker, F. W.: 1992, Ecol. Appl. 2, 285.Google Scholar
  4. Clark, M. J. and Smith, F. B.: 1988, Nature 332, 245.Google Scholar
  5. Church, B. W., Wheeler, D. L., Campbell, C. M., Nutley, R.V. and Ansphaugh, L. R.: 1990, Health Physics 59, 503.Google Scholar
  6. Clint, G. M. and Dighton, J.: 1992, New Phytol 121, 555.Google Scholar
  7. Coughtry, P. J., Kirton, J. A. and Mitchell, N. G.: 1989, Enviorn. Pollut. 62, 281.Google Scholar
  8. Dahlman, R. C., Auerbach, S. I. and Dunaway, P. B.: 1969, Environmental Contamination by Radioactive Materials, International Atomic Energy Agency and World Health Organization, Vienna Austria.Google Scholar
  9. Eisenbud, M.: 1987, Experimental Radioactivity, Academic Press New York, New York.Google Scholar
  10. Entry, J. A., Rygiewicz, P. T. and Emmingham, W. H.: 1993, J. Environ. Qual. 22, 742.Google Scholar
  11. Entry, J. A., Rygiewicz, P. T. and Emmingham, W. H.: 1994, Environ. Pollut. 86, 201.Google Scholar
  12. Entry, J. A. and Emmingham, W. H.: 1995, Can. J. For. Res. (in press).Google Scholar
  13. Essington, E. H. and Nishita, H.: 1966, Plant & Soil 24, 1.Google Scholar
  14. Essington, E. H. Nishita, H. and Wallace, A.: 1962. Soil Sci. 94, 96.Google Scholar
  15. Fried, A.S. and Grakovskiy, V.S.: 1988, Pochvovedeniye 2, 78.Google Scholar
  16. Gonzalez, A. and Anderer, J.: 1989, IAEA Bulletin 2, 21.Google Scholar
  17. Harley, J. C.: 1989. Mycol. Res. 92, 129.Google Scholar
  18. Harley, J. C. and Smith, S. E.: 1983, Mycological Symbiosis, Academic Press, London, 483 pp.Google Scholar
  19. Howard, B. J., Beresford, N. A. and Hove, K.: 1991, Health Physics 61, 715.Google Scholar
  20. Kirk, G. J. D. and Staunton, S.: 1989, J. Soil Sci. 40, 71.Google Scholar
  21. Mahara, Y.: 1993, ‘Storage and migration of fallout of strontium-90 and cesium-137 for over 40 years in the surface soil of Nagasaki’, J. Environ. Qual. 22, 722–730.Google Scholar
  22. Molina, R., Massicotte, H.B. and Trappe, J.B.: 1992, ‘Ecological Role and Specificity Phenomena in Ectomycorrhizal Plant Communities: Potentials for Interplant Linkages and Guild development', in Read, D. J., Lewis, D. H., Fitter, A. H. and Alexander, 1. J. (eds.), Mycorrhizas in Ecosystems. CAB International Press, 419, pp. 106-113.Google Scholar
  23. Murphy, C. E. and Johnson, T. L.: 1993, J. Envoron. Qual. 22, 793.Google Scholar
  24. Nifontova, M. G., Kulikov, G. I., Tarshis, G. I. and D'yachenko: 1989, Ekologiya 3, 40.Google Scholar
  25. Nye, P. H. and Tinker, P. B.: 1977, Solute movement in the soil/root system. Blackwell Scientific Publications, Oxford, 192 pp.Google Scholar
  26. Paasikallo, A.: 1984, Ann. Agric. Fenn. 23, 109.Google Scholar
  27. Pennttila, S. Kairesalo, T. and Uusi-Rauva, A.: 1993, Environ. Pollut. 82, 82.Google Scholar
  28. Pinder, J. E. III, McLeod, K. W., Alberts, J. J., Adriano, D. C. and Corey, J. C.: 1984, Health Physics 47, 375.Google Scholar
  29. Robison, W. L., Conrado, C. A. and Stuart, M. L.: 1988, URCL-58340, Lawerence Livermore National Laboratory, Livermore, CA.Google Scholar
  30. Robison, W. L. and Stone, E. L.: 1992, Health Physics 62, 496.Google Scholar
  31. Rogers, R. D. and Williams, S. E.: 1986, Soil Biol. Biochem. 4, 371.Google Scholar
  32. Salt, C. A., Mayes, and Elston, D. A.: 1992, J. Appl. Ecol. 29, 378.Google Scholar
  33. Sanzharova, D. I. and Aleksakhin, R. M.: 1982, Pochvovedeniye 9, 59.Google Scholar
  34. Sanders, F. E. and Tinker, P. B.: 1971, Nature 223, 278.Google Scholar
  35. Tensho, K., Yeh, K. L. and Mitsui, S.: 1961, Soil and Plant Food. 6, 4.Google Scholar
  36. Vance, N. C.: 1988, Physiology of Drought Stress in Pinus ponderosa (Dougl. ex Laws) and the Influence of Irradiance, Ph.D. Dissertation, Oregon State University, Corvallis OR.Google Scholar
  37. Wallace, A. and Romney, E. M.: 1972, Radioecology and Ecophysiology of desert plants at the Nevada Test Site. Environmental Radiation Division, Laboratory of Nuclear Medicine University of California, Riverside, 432 pp.Google Scholar
  38. Wallace, G. A. and Wallace, A.: 1983, J. Plant Nutrit. 6, 439.Google Scholar
  39. Watson, R., Glick, D., Horsenball, M., McCormick, J., Begley, S., Miller, S., Carroll, G. and KeeneOsborn, S.: 1993, Newsweek, December 27, 1993, pp. 14.Google Scholar
  40. Whicker, F. W., Pinder, J. E., Bowling, J. W., Alberts, J. J. and Brisbin, L. Jr.: 1990, Ecol. Monog. 60, 471.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • James A. Entry
    • 1
  • Nan C. Vance
    • 2
  • Melinda A. Hamilton
    • 3
  • Darlene Zabowski
    • 4
  • Lidia S. Watrud
    • 5
  • Domy C. Adriano
    • 6
  1. 1.Department of Agronomy and SoilsAuburn UniversityAuburnUSA
  2. 2.USDA Forest ServicePacific Northwest Research StationCorvallisUSA
  3. 3.Idaho National Engineering LaboratoryIdaho FallsUSA
  4. 4.College of Forest ResourcesUniversity of WashingtonSeattleUSA
  5. 5.Terrestrial Ecology BranchUS Environmental Protection Agency, Environmental Research LaboratoryCorvallisUSA
  6. 6.University of Georgia, Biogeochemical DivisionSavannah River Ecology LaboratoryAikenUSA

Personalised recommendations