Advertisement

Journal of Biomolecular NMR

, Volume 4, Issue 4, pp 483–490 | Cite as

Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain

  • Peter Schmieder
  • Alan S. Stern
  • Gerhard Wagner
  • Jeffrey C. Hoch
Research Papers

Summary

Nonlinear sampling along the constant-time dimension is applied to the constant-time HNCO spectrum of the dimerization domain of Ga14. Nonlinear sampling was used for the nitrogen dimension, while the carbon and proton dimensions were sampled linearly. A conventional ct-HNCO spectrum is compared with a nonlinearly sampled spectrum, where the gain in experiment time obtained from nonlinear sampling is used to increase the resolution in the carbonyl dimension. Nonlinearly sampled data are processed by maximum entropy reconstruction. It is shown that the nonlinearly sampled spectrum has a higher resolution, although it was recorded in less time. The constant intensity of the signal in the constant-time dimension allows for a variety of sampling schedules. A schedule of randomly distributed sampling points yields the best results. This general method can be used to significantly increase the quality of heteronuclear constant-time spectra.

Keywords

Nonlinear sampling Constant-time spectra Maximum entropy reconstruction Resolution enhancement Heteronuclear triple-resonance experiments HNCO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barna, J.C.J., Laue, E.D., Mayger, M.R., Skilling, J. and Worrall, S.J.P. (1987) J. Magn. Reson., 73, 69–77.Google Scholar
  2. Bax, A., Mehlkopf, A.F. and Smidt, J. (1979) J. Magn. Reson., 35, 167–169.Google Scholar
  3. Bax, A., De Jong, P.G., Mehlkopf, A.F. and Smidt, J. (1980) J. Magn. Reson. 69, 567–570.Google Scholar
  4. Bax, A. and Pochapsky, S.S. (1992) J. Magn. Reson., 99, 638–643.Google Scholar
  5. Clore, G.M. and Gronenborn, A.M. (1991) Prog. NMR Spectrosc., 23, 43–92.Google Scholar
  6. Clubb, R.T., Thanabal, V. and Wagner, G. (1992) J. Magn. Reson., 97, 213–217.Google Scholar
  7. Davis, A.L., Boelens, R. and Kaptein, R. (1992) J. Biomol. NMR, 2, 395–400.Google Scholar
  8. Grzesiek, S. and Bax, A. (1992) J. Magn. Reson., 96, 432–440.Google Scholar
  9. Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185–204.Google Scholar
  10. Hoch, J.C. (1989) Methods Enzymol. 176, 216–241.Google Scholar
  11. Hodgkinson, P., Mott, H.R., Driscoll, P.C., Jones, J.A. and Hore, P.J. (1993) J. Magn. Reson. Rer. B., 101, 218–222.Google Scholar
  12. Hurd, R.E. (1990) J. Magn. Reson., 87, 422–428.Google Scholar
  13. Jones, J.A. and Hore, P.J. (1991) J. Magn. Reson., 92, 496–514.Google Scholar
  14. Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.Google Scholar
  15. Kay, L.E. (1993) J. Am. Chem. Soc., 115, 2055–2057.Google Scholar
  16. Laue, E.D., Skilling, J., Staunton, J., Sibisi, S. and Bereton, R.G. (1985) J. Magn. Reson., 62, 437–452.Google Scholar
  17. Laue, E.D., Mayger, M.R., Skilling, J. and Staunton, J. (1986) J. Magn. Reson., 68, 14–29.Google Scholar
  18. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393–399.Google Scholar
  19. McIntosh, L.P. and Dahlquist, F.W. (1990) Q. Rev. Biophys., 23, 1–38.Google Scholar
  20. Montelione, G.T. and Wagner, G. (1990) J. Magn. Reson., 87, 183–188.Google Scholar
  21. Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. (1991), J. Magn. Reson., 94, 209–213.Google Scholar
  22. Robin, M., Delsuc, M.-A., Guittet, E. and Lallemand, J.-Y. (1991) J. Magn. Reson., 92, 645–650.Google Scholar
  23. Schmieder, P., Stern, A.S., Wagner, G. and Hoch, J.C. (1993) J. Biomol. NMR, 3, 569–576.Google Scholar
  24. Sibisi, S. (1983) Nature, 301, 134–136.Google Scholar
  25. Skilling, J. and Bryan, R.K. (1984) Mon. Not.R. Astron. Soc., 211, 111–124.Google Scholar
  26. Sklenar, V., Piotto, M., Leppik, R. and Saudek, V. (1993) J. Magn. Reson. Ser. A., 102, 241–245.Google Scholar
  27. Stephenson, D.S. (1988) Prog. NMR Spectrosc., 14, 515–626.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1994

Authors and Affiliations

  • Peter Schmieder
    • 1
  • Alan S. Stern
    • 2
  • Gerhard Wagner
    • 1
  • Jeffrey C. Hoch
    • 2
  1. 1.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonU.S.A.
  2. 2.Rowland Institute for ScienceCambridgeU.S.A.

Personalised recommendations