Advertisement

Solar Physics

, Volume 105, Issue 1, pp 1–15 | Cite as

Properties of r-modes in the Sun

  • Charles L. Wolff
  • Jane B. Blizard
Article

Abstract

Global oscillations of the Sun (r-modes) with very long periods ∼ 1 month are reviewed and studied. Such modes would be trapped in an acoustic cavity formed either by most of the convective envelope or by most of the radiative interior. A turning point frequency giving cavity boundaries is defined and the run of eigenvalues for angular harmonics l ≤ 3 are plotted for a conventional solar convection zone. The r-modes show equipartition of oscillatory energy among shells which each contain one antinode in the radial dimension. Toroidal motion is dominant to at least the 14th radial harmonic mode. Viscosity from convective turbulence is strong and would damp any mode in just a few solar rotations if it were the only significant nonadiabatic effect. ‘Radial fine splitting’ which lifts the degeneracy in n is very small (20 nHz or less) for all n ≤ 14 trapped in the envelope. But, if splitting could be detected, we would have a valuable new constraint on solar convection theories.

Keywords

Viscosity Convection Convection Zone Solar Rotation Point Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenman, M. L. and Smeyers, P.: 1977, Astrophys. Space Sci. 48, 123.Google Scholar
  2. Baker, N. H. and Temesvary, S.: 1966, Tables of Convective Stellar Envelope Models (2nd ed.), NASA Goddard Institute for Space Studies, New York.Google Scholar
  3. Bos, R. J. and Hill, H. A.: 1983, Solar Phys. 82, 89.Google Scholar
  4. Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford.Google Scholar
  5. Cox, J. P. and Giuli, R.: 1968, Principles of Stellar Structure, Gordon and Breach, New York.Google Scholar
  6. Davis, R., Jr. and Evans, J. C., Jr.: 1978, in J. A. Eddy (ed.), The New Solar Physics, Westview Press, Boulder, p. 35.Google Scholar
  7. Delache, P. and Scherrer, P. H.: 1983, Nature 306, 651.Google Scholar
  8. Durney, B. R. and Spruit, H. C.: 1979, Astrophys. J. 234, 1067.Google Scholar
  9. Endal, A. S., Sofia, S., and Twigg, L. W.: 1985, Astrophys. J. 290, 748.Google Scholar
  10. Grec, G., Fossat, E., and Pomeranz, M. A.: 1983, Solar Phys. 82, 55.Google Scholar
  11. Guenther, D. B. and Gilman, P. A.: 1985, Astrophys. J. 295, 195.Google Scholar
  12. Landau, L. D. and Lifshitz, E. M.: 1959, Fluid Mechanics, Pergamon, London.Google Scholar
  13. Papaloizou, J. and Pringle, J. E.: 1978, Monthly Notices Roy. Astron. Soc. 182, 423.Google Scholar
  14. Provost, J., Berthomieu, G., and Rocca, A.: 1981, Astron. Astrophys. 94, 126.Google Scholar
  15. Saio, H.: 1982, Astrophys. J. 256, 717.Google Scholar
  16. Shibahashi, H., Noels, A., and Gabriel, M.: 1983, Astron. Astrophys. 123, 283.Google Scholar
  17. Smeyers, P., Craeynest, D., and Martens, L.: 1981, Astrophys. Space Sci. 78, 483.Google Scholar
  18. Ulrich, R. K. and Rhodes, E. J., Jr.: 1983, Astrophys. J. 265, 551.Google Scholar
  19. Wolff, C. L.: 1972, Astrophys. J. 177, L87.Google Scholar
  20. Wolff, C. L.: 1974, Astrophys. J. 194, 489.Google Scholar
  21. Wolff, C. L.: 1979, Astrophys. J. 227, 943.Google Scholar
  22. Wolff, C. L.: 1983, Astrophys. J. 264, 667.Google Scholar
  23. Woodard, M. and Hudson, H. S.: 1983, Nature 305, 589.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Charles L. Wolff
    • 1
  • Jane B. Blizard
    • 2
  1. 1.NASA Goddard Space Flight CenterGreenbeltU.S.A.
  2. 2.Astrophysics, Planetary, and Atmospheric Sciences Dept.University of ColoradoBoulderU.S.A.

Personalised recommendations