Advertisement

Biometals

, Volume 8, Issue 1, pp 70–79 | Cite as

The nickel resistance determinant cloned from the enterobacterium Klebsiella oxytoca: conjugational transfer, expression, regulation and DNA homologies to various nickel-resistant bacteria

  • Ralf-Dietmar Stoppel
  • Maria Meyer
  • Hans Günter Schlegel
Research Papers

Abstract

Klebsiella oxytoca strain CCUG 15788, isolated from a mineral oil emulsion tank in Göteborg, Sweden, was found to be nickel-resistant (tolerating 10 mm NiCl2 in non-complexing mineral-gluconate media; inducible resistance). The nickel resistance determinants were transferred by helper-assisted conjugation to various strains of Escherichia coli and Citrobacter freundii and expressed to between 5 and 10 mm NiCl2. A 4.3 kb HindIII fragment was cloned from the genomic DNA of K. oxytoca. Ligated into the vector pSUP202, the fragment caused constitutive nickel resistance (of up to 3 or 10 mm Ni2+) in various E. coli strains. After cloning into the broad host range vector pVDZ'2 the fragment even expressed low nickel resistance in the transconjugant of Alcaligenes eutrophus AE104. With the 4.3 kb HindIII fragment as a biotinylated DNA probe it was shown by DNA-DNA hybridization that the nickel resistance determinant resides on the chromosome of K. oxytoca and not on its circular plasmid pKO1 (160 kb) or linear plasmid pKO2 (50 kb). Nickel resistance strongly correlated with the presence of the 4.3 kb HindIII fragment in the transconjugants. No homologies were detected when the nickel resistance determinants of other well-known nickel-resistant bacteria, such as A. eutrophus CH34 or A. denitrificans 4a-2, were used as target DNA. Among the 60 strains examined, positive signals only appeared with the 3.1 kb DNA fragment from A. xylosoxydans 31A and the genomic DNA of two enterobacterial strains (5-1 and 5–5) isolated from nickel-rich soil in New Caledonia.

Keywords

DNA-DNA homologies Klebsiella oxytoca nickel resistance transconjugants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel FM, Brent R, Kingston RE, et al. 1987 Current Protocols in Molecular Biology. New York: John Wiley.Google Scholar
  2. Datta N, Hedges RW, Shaw EJ, Sykes RB, Richmond MH. 1971 Properties of an R-factor from Pseudomonas aeruginosa. J Bacteriol 108, 1244–1249.Google Scholar
  3. Deretic V, Chandrasekharappa S, Gill JF, Chatterjee DK, Chakrabarty AM. 1987 A set of cassettes and improved vectors for genetic and biochemical characterization of Pseudomonas genes. Gene 57, 61–72.Google Scholar
  4. Diels L, Mergeay M. 1990 DNA probe-mediated detection of resistance bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56, 1485–1491.Google Scholar
  5. Drews G. 1983 Mikrobiologisches Praktikum für Naturwissenschaftler, 4. Auflage. Berlin: Springer-Verlag.Google Scholar
  6. Eitinger T, Friedrich B. 1991 Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus. J Biol Chem 266, 3222–3227.Google Scholar
  7. Feng PCS, Hartman PA. 1982 Fluorogenic assays for immediate confirmation of Escherichia coli. Appl Environ Microbiol 43, 1320–1329.Google Scholar
  8. Gerstenberg C, Friedrich B, Schlegel HG. 1982 Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria. Arch Microbiol 133, 90–96.Google Scholar
  9. Gijsegem van F, Toussaint A. 1982 Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis. Plasmid 7, 30–44.Google Scholar
  10. Hanahan D. 1983 Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.PubMedGoogle Scholar
  11. Kado CI, Liu ST. 1981 Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145, 1365–1373.Google Scholar
  12. Kaur P, Ross K, Siddiqui RA, Schlegel HG. 1990 Nickel resistance of Alcaligenes denitrificans strain 4a-2 is chromosomally coded. Arch Microbiol 154, 133–138.Google Scholar
  13. Lejeune P, Mergeay M, Gijsegem van F, Faelen M, Gerits J, Toussaint A. 1983 Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4::mini-Mu) in Alcaligenes eutrophus CH34 and Pseudomonas fluorescens 6.2. J Bacteriol 155, 1015–1026.Google Scholar
  14. Liesegang H, Lemke K, Siddiqui RA, Schlegel HG. 1993 Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175, 767–778.Google Scholar
  15. Lohmeyer M, Friedrich CG. 1987 Nickel transport in Alcaligenes eutrophus. Arch Microbiol 149, 130–135.Google Scholar
  16. Mattsby-Baltzer I, Sandin M, Ahlström B, et al. 1989 Microbial growth and accumulation in industrial metal-working fluids. Appl Environ Microbiol 55, 2681–2689.Google Scholar
  17. Mergeay M. 1991 Towards an understanding of the genetics of bacterial metal resistance. Tibtech 9, 17–24.Google Scholar
  18. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Gijsegem van F. 1985 Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162, 328–334.Google Scholar
  19. Mergeay M, Houba C, Gerits J. 1978 Extrachromosomal inheritance controlling resistance to cadmium, cobalt and zinc ions: evidence from curing in a Pseudomonas. Arch Int Physiol Biochim 86, 440–441.Google Scholar
  20. Navarro C, Wu LF, Mandrand-Berthelot MA. 1993 The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol 9, 1181–1191.Google Scholar
  21. Nies DH. 1992 Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27, 17–28.Google Scholar
  22. Nies D, Mergeay M, Friedrich B, Schlegel HG. 1987 Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169, 4865–4868.Google Scholar
  23. Oelmüller U, Krüger N, Steinbüchel A, Friedrich CG. 1990 Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. J Microbiol Methods 11, 73–84.Google Scholar
  24. Sambrook J, Fritsch EF, Maniatis T. 1989 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  25. Schlegel HG, Cosson JP, Baker AM. 1991 Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Bot Acta 104, 18–25.Google Scholar
  26. Schmidt T. 1992 Die plasmidkodierte Nickelresistenz von Alcaligenes xylosoxydans 31A: Klonierung und Expression beteiligter Gene. PhD thesis, Unitext Verlag, Göttingen.Google Scholar
  27. Schmidt T, Schlegel HG. 1989 Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes. FEMS Microbiol Ecol 62, 315–328.Google Scholar
  28. Schmidt T, Stoppel RD, Schlegel HG. 1991 High level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2. Appl Environ Microbiol 57, 3301–3309.Google Scholar
  29. Sensfuss C, Schlegel HG. 1988 Plasmid pMOL28-encoded resistance to nickel is due to specific efflux. FEMS Microbiol Lett 55, 295–298.Google Scholar
  30. Siddiqui RA, Benthin K, Schlegel HG. 1989 Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. J. Bacteriol 171, 5071–5078.Google Scholar
  31. Siddiqui RA, Schlegel HG. 1987 Plasmid pMOL28-mediated inducible nickel resistance in Alcaligenes eutrophus strain CH34. FEMS Microbiol Lett 43, 9–13.Google Scholar
  32. Siddiqui RA, Schlegel HG, Meyer M. 1988 Inducible and constitutive expression of pMOL28-encoded nickel resistance in Alcaligenes eutrophus N9A. J Bacteriol 170, 4188–4193.Google Scholar
  33. Simon R, Priefer U, Pühler A. 1983a Vector plasmids for in vivo and in vitro manipulations of Gram-negative bacteria. In: Pühler A, ed. Molecular Genetics of Bacteria-Plant Interactions. Berlin: Springer-Verlag.Google Scholar
  34. Simon R, Priefer U, Pühler A. 1983b A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1, 784–791.Google Scholar
  35. Smith DH. 1967 R-factors mediate resistance to mercury, nickel and cobalt. Science 156, 1114–1116.Google Scholar
  36. Stoppel RD. 1992 Charakterisierung und Klonierung der plasmidgebundenen Nickelresistenz von Alcaligenes eutrophus KTO2 und Untersuchungen zur Homologie und Verbreitung verschiedener Nickelresistenzgene. PhD thesis, Unitext Verlag, Göttingen.Google Scholar
  37. Timotius K, Schlegel HG. 1987 Aus Abwässern isolierte nickel-resistente Bakterien. Nachr Akad Wissensch Göttingen II. Math-Phys Kl 3, 15–23.Google Scholar
  38. Varma AK, Sensfuss C, Schlegel HG. 1990 Inhibitor effects on the accumulation and efflux of nickel ions in plasmid pMOL28-harboring strains of Alcaligenes eutrophus. Arch Microbiol 154, 42–49.Google Scholar
  39. Wolfram L, Eitinger L, Friedrich B. 1991 Construction and properties of a triprotein containing the high-affinity nickel transporter of Alcaligenes eutrophus. FEBS Lett 283, 109–112.Google Scholar
  40. Yanisch-Perron C, Vieira J, Messing J. 1985 Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and PUC19 vectors. Gene 33, 103–119.CrossRefPubMedGoogle Scholar

Copyright information

© Rapid Communications of Oxford Ltd 1995

Authors and Affiliations

  • Ralf-Dietmar Stoppel
    • 1
  • Maria Meyer
    • 1
  • Hans Günter Schlegel
    • 1
  1. 1.Institut für Mikrobiologie der Georg-August-UniversitätGöttingenGermany

Personalised recommendations