Biotechnology Techniques

, Volume 5, Issue 6, pp 415–420 | Cite as

Strategies for large scale inoculum development for solid state fermentation system: Conidiospores of Trichoderma harzianum

  • S. Roussos
  • A. Olmos
  • M. Raimbault
  • G. Saucedo-Castañeda
  • B. K. Lonsane
Bioreactor Performance

Summary

The suitability of disc fermenter for efficient production of conidiospores by Trichoderma harzianum is limited to a working capacity of 0.61 agar medium due to large decrease in spore production per cm2 of the culture surface area with further increase in the capacity. In contrast, Zymotis, a large scale solid state fermenter designed at ORSTOM, France and use of inert solid support for absorbing nutrients offer many advantages for production of conidiospores in quantity sufficient enough to inoculate pilot and larger fermenters. Five times higher production of conidiospores in Zymotis, as compared to the agar medium in flask, constitutes a success in the development of large scale inoculum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bank, G.T. (1984). Topics in Enzyme Ferment. Biotechnol. 3,170–266.Google Scholar
  2. Deschamps, F., Giuliano, C., Asther, M., Huet, M-C. and Roussos, S. (1985). Biotechnol. Bioeng. 27, 1385–1388.Google Scholar
  3. Douglas, K.A., Hoking, A.D. and Pitt, J.I. (1979). Appl. Environ. Microbiol. 37, 959–964.Google Scholar
  4. Elad, Y., Hadar, Y., Chet, I. and Henis, Y. (1982). Crop Protection 1, 199–211.Google Scholar
  5. Fujiwara, A., Okuda, T., Masuda, S., Shiomi, Y., Miyamoto, C., Sekine, Y., Tazoe, M. and Fujiwara, M. (1982). Agric. Biol. Chem. 46, 1803–1818.Google Scholar
  6. Gonzalez-Blanco, P., Saucedo-Castaneda, G. and Viniegra-Gonzalez, G. (1990). J. Ferment. Bioeng. 70, 351–354.Google Scholar
  7. Lonsane, B.K. and Ramesh, M.V. (1990). Adv. Appl. Microbiol. 35, 1–56.Google Scholar
  8. Lonsane, B. K., Ghildyal, N. P., Budiatman, S. and Ramakrishna, S. V. (1985). Enzyme Microb. Technol. 7, 258–265.Google Scholar
  9. Lonsane, B.K., Ghildyal, N.P., Ramakrishna, M. and Stutzenberger, F. (1991). In: Solid Substrate Cultivation (Doelle, H.W., Mitchell, D.A. and Rolz, C.E. Eds), Essex: Elsevier Science Publishers, in press.Google Scholar
  10. Lonsane, B.K. and Krishnaiah, M.M. (1991). In: Solid Substrate Cultivation (Doelle, H.W., Mitchell, D.A. and Rolz, C.E. Eds), Essex: Elsevier Science Publishers, in press.Google Scholar
  11. Mandels, M., Andreotti, R. and Roche, C. (1976). Biotechnol. Bioeng. Symp. 6, 21–33.Google Scholar
  12. Mitchell, D.A. and Lonsane, B.K. (1991). In: Solid Substrate Cultivation (Doelle, H.W., Mitchell, D.A. and Rolz, C.E. Eds), Essex: Elsevier Science Publishers, in press.Google Scholar
  13. Muindi, P.J. and Hanssen, J.F. (1981). J. Sci. Food Agric. 32, 655–661.Google Scholar
  14. Okuda, T., Fujiwara, A. and Fujiwara, M. (1982). Agric. Biol. Chem. 46, 1811–1822.Google Scholar
  15. Raimbault, M. and Alazard, D. (1980). Eur. J. Appl. Microbiol. Biotechnol. 9, 199–209.Google Scholar
  16. Roussos, S. (1987). Thèse d'Etat, Université de Provence, France, ORSTOM Eds N∘g857–3, Paris.Google Scholar
  17. Roussos, S., Aquiahuatl, M-A., Brizuela, M-A., Olmos A., Rodriguez, W. and Viniegra-Gonzalez, G. (1989). Micol. Neotrop. Apl. 2, 3–17.Google Scholar

Copyright information

© Science & Technology Letters 1991

Authors and Affiliations

  • S. Roussos
    • 1
  • A. Olmos
    • 2
  • M. Raimbault
    • 1
  • G. Saucedo-Castañeda
    • 2
  • B. K. Lonsane
    • 3
  1. 1.ORSTOM, Center Montpellier, Biotechnology UnitMontpellierFrance
  2. 2.Department of BiotechnologyAutonomous Metropolitan University, Iztapalapa CampusMexico DFMexico
  3. 3.Fermentation Technology and Bioengineering Discipline, Central Food Technological Research InstituteMysoreIndia

Personalised recommendations