Advertisement

Biotechnology Techniques

, Volume 1, Issue 4, pp 245–250 | Cite as

A novel immobilized hybridoma reactor for the production of monoclonal antibodies

  • O. T. Ramirez
  • R. Mutharasan
  • W. E. Magee
Culture systems

Summary

Mouse hybridoma cells were succesfully cultivated for more than 640 hours in the interparticle spaces of a tubular reactor packed with spherical glass beads. The maximum monoclonal antibody (MAb) concentration attained was 110 mg/l and a viable cell density in the order of 1 × 107 cells/ml was achieved. A productivity per reactor void volume of 5.2 mg MAb/hr/l was obtained, which is comparable to the best systems currently in use.

Keywords

Monoclonal Antibody Viable Cell Cell Density Glass Bead Void Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abecassis, J., David-Eteve, Ch., and Soun, A. (1985). J. L. Chrom., 81,135–153.Google Scholar
  2. Adamson, S. P., Fitzpatrick, S. L., Behie, L. A., Gaucher, G. M., and Lesser, B. H. (1983). Biotech. Lett., 5, 573–578.Google Scholar
  3. Altshuler, G., Dziewulski, D. M., Sowek, J. A., and Belfort, G. (1986). Biotech. & Bioeng., 28, 646–658.Google Scholar
  4. Bosworth, J., Brimfield, A., Naylor, J., and Hunter, K. (1983). J. Immun. Meth., 62, 331–336.Google Scholar
  5. Dean, R. C., Karkare, S. B., Phillips, P. G., Ray, N. G., and Runstadler, P. W. (1986). Verax Co., Lebanon NH, document TM-184 A.Google Scholar
  6. Gencer, M. A., and Mutharasan, R. (1983). Biotech. & Bioeng. 25, 224–2243.Google Scholar
  7. Gharapetian, H., Davies, N. A., and Sun, A. M. (1986). Biotech. & Bioeng. 28, 1595–1600.Google Scholar
  8. Griffiths, J. B., Thornton, B., McEntee., I. (1982). Dev. Biol. Stand., 50, 103–110.Google Scholar
  9. Griffiths, J. B. (1986). Animal Cell Culture: A Practical Approach, Freshney, R. I., (Ed.), IRL Press, N. Y.,33–69Google Scholar
  10. Luan, Y. T., Mutharasan, R., and Magee, W., E. (1987), Biotech. Lett., submitted for publication.Google Scholar
  11. Luan, Y. T. (1987). “Cultivation Strategies for Optimizing Monoclonal Antibody Production”, M.S. Thesis, Deptartment of Chemical Engineering, Drexel Univesity, Philadelphia, U. S. A.Google Scholar
  12. Marcipar, A., Henno, P., Lentwojt, E., Roseto, A., and Broun, G. (1983). Annals N.Y. Acad. Sci., 413, 416–420.Google Scholar
  13. Mizrahi, A. (1984). Dev. Biol. Stand., 55, 93–102.Google Scholar
  14. Nilson, K., Scheirer, W., Merten, O. W., Ostberg, L., Liehl, E., Katinger, H. W. D., and Mosbach, K. (1983). Nature, 302, 629–630.Google Scholar
  15. Ozato, K., Mayer, N., and Sachs, D. H. (1980). J. Immunol. 124, 533–540.Google Scholar
  16. Reuveny, S., Velez, D., Miller, L., and MacMillam. J. D. (1986). J. Immun. Meth., 86, 61–69.Google Scholar
  17. Robinson, C. W., Moo-Young, M., and Lamtey, J. “Ethanol Production by Immobilized Yeast Cells in a Packed Tower”, 6th International Fermentation Symposium, London, Canada, 1980.Google Scholar
  18. Rupp, R. (1986). From Large-Scale Mammalian Cell Culture, Tolbert, W., Feder, J. (eds.)., Academic Press, N.Y., 19–38.Google Scholar
  19. Tharakan, J., and Chau, P. (1986). Biotech. & Bioeng. 28, 1064–1071.Google Scholar
  20. Wiemann, M. C., McCarthy, K., Creswick, B. C., Dexter, D. L., and Calabresi, P. (1982). Proceedings of the American Society of Clinical Oncology, (abstract), 1, 4.Google Scholar
  21. Whiteside, J., P., Whiting, B., R., and Spier, R., E. (1979). Dev. Biol. Stand., 42, 113–119.Google Scholar

Copyright information

© Chapman & Hall 1987

Authors and Affiliations

  • O. T. Ramirez
    • 1
  • R. Mutharasan
    • 1
  • W. E. Magee
    • 2
  1. 1.Department of Chemical EngineeringDrexel UniversityPhiladelphiaUSA
  2. 2.Department of Bioscience and BiotechnologyDrexel UniversityPhiladelphiaUSA

Personalised recommendations