Boundary-Layer Meteorology

, Volume 60, Issue 4, pp 375–395

Drag and drag partition on rough surfaces

  • M. R. Raupach
Article

Abstract

An analytic treatment of drag and drag partition on rough surfaces is given. The aims are to provide simple predictive expressions for practical applications, and to rationalize existing laboratory and atmospheric data into a single framework. Using dimensional analysis and two physical hypotheses, theoretical predictions are developed for total stress (described by the square root of the canopy drag coefficient), stress partition (described by the ratio ΤS/Τ of the stress Τs on the underlying ground surface to total stress Τ), zero-plane displacement and roughness length. The stress partition prediction is the simple equation τS/τ= 1/(1+βλ), where λ= CRCS the ratio of element and surface drag coefficients. This prediction agrees very well with data and is free of adjustable constants. Other predictions also agree well with a range of laboratory and atmospheric data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S. P. S.: 1975, ‘A Drag Partition Theory for Determining the Large-Scale Roughness Parameter and Wind Stress on the Arctic Pack Ice’, J. Geophys. Res. 80, 3447–3454.Google Scholar
  2. Bandyopadhyay, P. R.: 1987, ‘Rough-Wall Turbulent Boundary Layers in the Transition Regime’, J. Fluid Mech. 180, 231–266.Google Scholar
  3. Batchelor, G. K.: 1967, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 615 pp.Google Scholar
  4. Finnigan, J. J., Raupach, M. R., Bradley, E. F., and Aldis, G. K.: 1990, ‘A Wind Tunnel Study of Turbulent Flow over a Two-Dimensional Ridge’, Boundary-Layer Meteorol. 50, 277–317.Google Scholar
  5. Garratt, J. R.: 1977, ‘Aerodynamic Roughness and Mean Monthly Surface Stress over Australia’, Div. Atmos. Phys. Tech. Pap. 29, CSIRO, Australia.Google Scholar
  6. Garratt, J. R.: 1980, ‘Surface Influence upon Vertical Profiles in the Atmospheric Near Surface Layer’, Quart. J. Roy. Meteorol. Soc. 106, 803–819.Google Scholar
  7. Jackson, P. S.: 1981, ‘On the Displacement Height in the Logarithmic Velocity Profile’, J. Fluid Mech. 111, 15–25.Google Scholar
  8. Jarvis, P. G., James, G. B., and Landsberg, J. J.: 1976, ‘Coniferous Forest’, in J. L. Monteith (ed.), Vegetation and the Atmosphere, Vol. 2, Academic Press, London, p. 171–240.Google Scholar
  9. Koloseus, H. J. and Davidian, J.: 1986, ‘Free-surface Instability Correlations, and Roughness-Concentration Effects on Flow over Hydrodynamically-Rough Surfaces’, USGS Water Supply Pap. 1592 C. Google Scholar
  10. Lettau, H.: 1969, ‘Note on Aerodynamic Roughness-Parameter Estimation on the Basis of Roughness-Element Description’, J. Appl. Meteorol. 8, 828–832.Google Scholar
  11. Lighthill, J.: 1986, An Informal Introduction to Theoretical Fluid Mechanics, Clarendon Press, Oxford, 260 pp.Google Scholar
  12. Marshall, J. K.: 1971, ‘Drag Measurements in Roughness Arrays of Varying Density and Distribution’, Agric. Meteorol. 8, 269–292.Google Scholar
  13. O'Loughlin, E. M.: 1965, ‘Resistance to Flow over Boundaries with Small Roughness Concentrations’, Ph.D. Dissertation, University of Iowa.Google Scholar
  14. Raupach, M. R., Antonia, R. A. and Rajagopalan, S.: 1991, ‘Rough-Wall Turbulent Boundary Layers’, Appl. Mechs. Revs. 44, 1–25.Google Scholar
  15. Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1989, ‘Coherent Eddies in Vegetation Canopies’, Proc. Fourth Australasian Conf. on Heat and Mass Transfer, Christchurch, New Zealand, 9–12 May, 1989, pp. 75–90.Google Scholar
  16. Raupach, M. R., Gillette, D. A., and Leys, J. F.: 1992, ‘The Effect of Roughness Elements on Wind Erosion Threshold’, J. Geophys. Res. (submitted).Google Scholar
  17. Raupach, M. R., Thom, A. S. and Edwards, I.: 1980, ‘A Wind Tunnel Study of Turbulent Flow Close to Regularly Arrayed Rough Surfaces’, Boundary-Layer Meteorol. 18, 373–397.Google Scholar
  18. Schlichting, H.: 1936, ‘Experimentelle Untersuchungen zum Rauhigkeitsproblem’, Ing.-Arch. 7, 1–34; NACA Tech. Mem. 823.Google Scholar
  19. Shaw, R. H. and Pereira, A. R.: 1982, ‘Aerodynamic Roughness of a Plant Canopy: a Numerical Experiment’, Agric. Meteorol. 26, 51–65.Google Scholar
  20. Taylor, P. A.: 1988, ‘Turbulent Wakes in the Atmospheric Boundary Layer’, in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment: Advances and Applications, Springer-Verlag, Berlin, p. 270–292.Google Scholar
  21. Thom, A. S.: 1971, ‘Momentum Absorption by Vegetation’, Quart. J. Roy. Meteorol. Soc. 97, 414–428.Google Scholar
  22. Wooding, R. A., Bradley, E. F., and Marshall, J. K.: 1973, ‘Drag Due to Regular Arrays of Roughness Elements of Varying Geometry’, Boundary-Layer Meteorol. 5, 285–308.Google Scholar
  23. Yaglom, A. M.: 1979, ‘Similarity Laws for Constant-Pressure and Pressure-Gradient Turbulent Wall Flows’, Ann. Rev. Fluid Mech. 11, 505–540.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • M. R. Raupach
    • 1
  1. 1.CSIRO Centre for Environmental MechanicsCanberraAustralia

Personalised recommendations