Advertisement

Biotechnology Letters

, Volume 18, Issue 8, pp 927–932 | Cite as

A postfermentative stage improves penicillin acylase production by a recombinant E. coli

  • Antonio De León
  • Enrique Galindo
  • Octavio T. Ramírez
Article

Abstract

Active penicillin acylase is formed only after an in vivo post-translational processing of the polypeptide precursor. Such a maturation process is rare in procaryotes. In this work, incubation under aerated conditions, of whole recombinant E. coli cells after glucose depletion and growth cessation, i.e., during the postfermentative stage, consistently resulted in 2- to 4-fold increases in penicillin acylase activity. Such results suggest that penicillin acylase maturation occurs to a high extent even during the postfermentative stage. Accordingly, the effect of different incubation conditions, during the postfermentative stage, on penicillin acylase was determined. Incubation under anaerobic conditions resulted only in a 1.27-fold increase of enzyme activity, with respect to the end of the batch culture, whereas a 3- and 4- fold increase occurred during incubation under dissolved oxygen concentrations of 100 and 43% (with respect to air sat.), respectively. Only a small negative effect, on the maturation process, was observed during incubation with acetate concentrations above 0.6 g/L. No effect of pH, in the range of 6.0 to 8.0, was observed.

Keywords

Dissolve Oxygen Batch Culture Dissolve Oxygen Concentration Maturation Process Coli Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balasingham, K., Warburton, D., Dunhill, P. and Lilly, M. D. (1972). Biochim Biophys. Acta 276: 250–256.Google Scholar
  2. Bauer, S. and Shiloach, J. (1974). Biotechnol. Bioeng. 16: 933–941.Google Scholar
  3. Bhattacharya, S., Gupta, V. S., Prabhune, A. A., SivaRaman, H., Debnath, M., and Ranjekar, P. K. (1993). Enzyme Microb. Technol. 15 (12): 1070–1073.Google Scholar
  4. Bowden, G. and Georgiou, G. (1988). Biotechnol. Prog. 4 (2): 97 -101.Google Scholar
  5. Choi, K. S., Kim, J. A., and Kang, H. S. (1992). J. Bacteriol. 174 (19): 6270–6279.Google Scholar
  6. Jacob, H. E. (1970). Advanced Microbiology. Academic Press. London. pp 91–123.Google Scholar
  7. Lee Y. L., and Chang, N. H. (1988). Biotechnol. Lett. 10 (11): 787–792.Google Scholar
  8. Lee Y. L., and Chang, N. H. (1990). Biotechnol. Bioeng. 36: 330–337.Google Scholar
  9. Nagalakshimi V., and Pai, J. S. (1994). Biotechnol. Tech. 8 (6): 431–434.Google Scholar
  10. Ospina, S., Merino, E., Ramírez, O.T., and López-Munguía, A. (1995). Biotechnol. Lett. 17 (6): 615–620.Google Scholar
  11. Ramírez, O.T., Zamora, R., Espinosa, G., Merino, E., Bolívar, F., and Quintero, R. (1994a). Proc. Biochem. 29: 197–206.Google Scholar
  12. Ramírez, O. T., Zamora, R., Quintero, R., and López-Munguía, A. (1994b). Enzyme Microb. Technol. 16: 895–903.Google Scholar
  13. Robas, N. and Branlant, C. (1994). Curr. Microbiol. 29 (5): 263–268.Google Scholar
  14. Scherrer, S., Robas, N., Zouheiry, H., and Branlant, G. (1994). Appl. Microbiol. Biotechnol. 42: 85–91.Google Scholar
  15. Schewale, B.J., and SivaRaman, H. (1989). Proc. Biochem. 24 (4): 145–154.Google Scholar
  16. Schumacher, G., Sizmann, D., Hang, H., Buckel, P. and Beck, A. (1986). Nucl. Acids Res. 14: 5713–5727.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Antonio De León
    • 1
  • Enrique Galindo
    • 1
  • Octavio T. Ramírez
    • 1
  1. 1.Dept. de BioingenieríaInstituto de Biotecnología. Universidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations