The Journal of Supercomputing

, Volume 1, Issue 3, pp 273–290 | Cite as

Parallel implementation of the quadratic sieve

  • Thomas R. Caron
  • Robert D. Silverman
Article

Abstract

A new version of the Quadratic Sieve algorithm, used for factoring large integers, has recently emerged. The new algorithm, called the Multiple Polynomial Quadratic Sieve, not only considerably improves the original Quadratic Sieve but also adds features that ideally suit a parallel implementation. The parallel implementation used for the new algorithm, a novel remote batching system, is also described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brillhart, J., Lehmer, D.H., Selfridge, J.L., Tuckerman, B., and Wagstaff, S.S. Jr. 1983. Factorizations of b n ± 1 for b = 2, 3, 5, 6, 7, 10, 11, 12, up to High Powers. American Mathematical Society, Providence, Rhode Island.Google Scholar
  2. Coppersmith, D., Odlyzko, A.M., and Schroeppel, R. 1986. Discrete logarithms in GF(p). Algorithmica, 1: 1–15.Google Scholar
  3. Davis, J.A., and Holdridge, D.B. 1983. Factorization using the quadratic sieve algorithm. Sandia National Laboratories Tech. Rept. SAND 83-1346.Google Scholar
  4. Davis, J.A., Holdridge, D.B., and Simmons, G.J. 1985. Status report on factoring. Advances in Cryptology: Lecture Notes in Computer Science, pp 183–215.Google Scholar
  5. Knuth, D.E. 1981. The Art of Computer Programming, vol. 2, Seminumerical Algorithms, 2nd ed. Addison-Wesley, Reading, Massachusetts, p. 365.Google Scholar
  6. Montgomery, P. 1985. Personal communication.Google Scholar
  7. Morrison, M., and Brillhart, J. 1975. A method of factoring and the factorization of F7. Math. Comput., 29: 183–205.Google Scholar
  8. Pomerance, C. 1983. Analysis and comparison of some integer factoring algorithms. In Computational Methods in Number Theory (H.W. Lenstra Jr., and R. Tijdeman, Eds.), Mathematisch Centrum, Amsterdam, pp. 89–140.Google Scholar
  9. Pomerance, C. 1985. A pipe-line architecture for factoring large integers with the quadratic sieve algorithm. SIAM J. Comput. Special Issue on Cryptography. To appear.Google Scholar
  10. Silverman, R.D., 1987. The multiple polynomial quadratic sieve. Math. Comput. 48: 329–339.Google Scholar
  11. Wagstaff, S.S. Jr. 1986. Personal communication.Google Scholar
  12. Wiedemann, D. 1986. Solving sparse linear equations over finite fields. IEEE Trans. Information Theory, IT-32, 54–61.Google Scholar
  13. Wunderlich, M. 1986. Personal communication.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Thomas R. Caron
    • 1
  • Robert D. Silverman
    • 1
  1. 1.The MITRE CorporationBedfordUSA

Personalised recommendations