Biotechnology Techniques

, Volume 8, Issue 6, pp 369–374 | Cite as

Stabilization of Candida lipase against acetaldehyde by adsorption onto celite

  • H. Kaga
  • B. Siegmund
  • E. Neufellner
  • K. Faber
  • F. Paltauf
Article

Summary

Immobilization of Candida rugosa lipase (Amano AY-30) by adsorption onto Celite 545 led to a markedly improved performance of the enzyme: Firstly, the enzyme was almost completely resistant to deactivation by acetaldehyde, which is liberated as unavoidable by-product in acyl-transfer reactions with vinyl esters, and secondly, the enantioselectivity was enhanced up to three-fold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, B. and Faber, K. (1991) J. Chem. Soc., Chem. Commun. 1198–1200.Google Scholar
  2. Bianchi, D., Cesti, P. and Battistel, E. (1988) J. Org. Chem. 53, 5531–5534.Google Scholar
  3. Bovara, R., Carrea, G., Ottolina, G. and Riva, S. (1993) Biotechnol. Lett. 15, 937–942.Google Scholar
  4. Burg, K., Mauz, O., Noetzel, S. and Sauber, K. (1988) Angew. Makromol. Chem. 157, 105–121.Google Scholar
  5. Cotterill, I.C., Sutherland, A.G., Roberts, S.M., Grobbauer, R., Spreitz, J. and Faber, K. (1991) J. Chem. Soc., Perkin Trans. 1, 1365–1368.Google Scholar
  6. Degueil-Castaing, M., De Jeso, B., Drouillard, S. and Maillard, B. (1987) Tetrahedron Lett. 28, 953–954.Google Scholar
  7. Donohue, T.M., Tuma, D.J. and Sorrell, M.F. (1983) Arch. Biochem. Biophys. 220, 239–246.Google Scholar
  8. Engh, K.R. (1993) Diatomite. In: Kirk-Othmer's Encyclopedia of Chemical Technology, 4th edn., vol. 8, pp. 108–118.Google Scholar
  9. Faber, K. and Riva, S. (1992) Synthesis 895–910.Google Scholar
  10. Guisan, J.M., Fernandez-Lafuente, R., Rodriguez, V., Bastida, A., Blanco, R.M. and Alvaro, G. (1993) Enzyme-stabilization by multipoint covalent attachment to activated pre-existing supports. In: Stability and Stabilization of Enzymes, van den Tweel, W.J.J., Harder, A. and Buitelaar, R.M., eds., pp. 55–62, Amsterdam: Elsevier.Google Scholar
  11. Oberhauser, T., Bodenteich, M., Faber, K., Penn, G. and Griengl, H. (1987) Tetrahedron 43, 3931–3944.Google Scholar
  12. Ottolina, G., Carrea, G., Riva, S., Sartore, L. and Veronese, F.M. (1992) Biotechnol. Lett. 14, 947–52.Google Scholar
  13. Seemayer, R. and Schneider, M.P. (1991) J. Chem. Soc., Chem. Commun. 49–50.Google Scholar
  14. Sih, C.J. and Wu, S.-H. (1989) Top. Stereochem. 19, 63–125.Google Scholar
  15. Takahata, H., Uchida, Y. and Momose, T. (1992) Tetrahedron Lett. 33, 3331–3332.Google Scholar
  16. Takahata, H., Uchida, Y., Ohkawa, Y. and Momose, T. (1993) Tetrahedron: Asymmetry 4, 1041–1042.Google Scholar
  17. Wang, Y.-F., Chen, S.-T., Liu, K.K.-C and Wong, C.-H. (1989) Tetrahedron Lett. 30, 1917–1920.Google Scholar
  18. Wang, Y.-F. and Wong, C.-H. (1988) J. Org. Chem. 53, 3127–3129.Google Scholar
  19. Weber, H.K., Stecher, H., Paltauf, F. and Faber, K., to be published in a forthcoming paper.Google Scholar
  20. Westley, J.W. and Halpern, B. (1968) J. Org. Chem. 33, 3978–3980.Google Scholar
  21. Wisdom, R.A., Dunnill, P. and Lilly, M.D. (1984) Enzyme Microb. Technol. 6, 443–446.Google Scholar

Copyright information

© Chapman & Hall, London 1994

Authors and Affiliations

  • H. Kaga
    • 1
  • B. Siegmund
    • 1
  • E. Neufellner
    • 1
  • K. Faber
    • 1
  • F. Paltauf
    • 2
  1. 1.Institute of Organic ChemistryAustria
  2. 2.Institute of BiochemistryGraz University of TechnologyGrazAustria

Personalised recommendations