Solar Physics

, Volume 34, Issue 2, pp 277–290 | Cite as

A model of the solar convection zone

  • H. C. Spruit


A model of the convection zone is presented which matches an empirical model atmosphere (HSRA) and an interior model. A mixing length formalism containing four adjustable parameters is used. Thermodynamical considerations provide limits on two of these parameters. The average temperature-pressure relation depends on two or three combinations of the four parameters. Observational information on the structure of the outermost layers of the convection zone, and the value of the solar radius limit the range of possible parameter combinations. It is shown that in spite of the remaining freedom of choice of the parameters, the mean temperature-pressure relation is fixed well by these data.

The reality of a small density inversion in the HSRA model is investigated. The discrepancy between the present model and a solar model by Mullan (1971) is discussed briefly.


Empirical Model Adjustable Parameter Parameter Combination Convection Zone Model Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, Z. and Iben, I., Jr.: 1971, Astrophys. J. 170, 157.Google Scholar
  2. Bahcall, J. N., Bahcall, N. A., and Ulrich, R. K.: 1969, Astrophys. J. 156, 559.Google Scholar
  3. Baker, N. and Temesvary, S.: 1966, Tables of Convective Stellar Atmospheres, 2nd edition, NASA Institute for Space Studies, New York.Google Scholar
  4. Böhm, K. H.: 1966, Z. Naturforsch. 219, 1107.Google Scholar
  5. Böhm, K. H. and Stückl, E.: 1967, Z. Astrophys. 66, 487.Google Scholar
  6. Cox, J. P. and Giuli, R. T.: 1968, Principles of Stellar Structure, Gordon and Breach, New York.Google Scholar
  7. Cox, A. N. and Stewart, J. N.: 1970, Astrophys. J. Suppl. 19, 243.Google Scholar
  8. Gingerich, O., Noyes, R. W., Kalkofen, W., and Cuny, Y.: 1971, Solar Phys. 18, 347.Google Scholar
  9. Henyey, P., Vardya, M. S., and Bodenheimer, L.: 1965, Astrophys. J. 142, 841.Google Scholar
  10. Kippenhahn, R.: 1963, in L. Gratton (ed.), Proc. Intern. School of Physics ‘Enrico Fermi’, Course 28, Acad. Press, New York, p. 330.Google Scholar
  11. Mihalas, D.: 1967, in B. Alder (ed.), Methods in Computational Physics 7, Acad. Press, New York, p. 15.Google Scholar
  12. Mihalas, D.: 1970, Stellar Atmospheres, Freeman and Co., San Francisco, p. 203.Google Scholar
  13. Mizuno, S. and Nishida, M.: 1969, Publ. Astron. Soc. Japan 21, 121.Google Scholar
  14. Mullan, D. J.: 1971, Monthly Notices Roy. Astron. Soc. 154, 467.Google Scholar
  15. Oster, L.: 1968, Solar Phys. 3, 543.Google Scholar
  16. Peyturaux, R.: 1955, Ann. Astrophys. 18, 34.Google Scholar
  17. Pierce, A. K., McMath, R. R., Goldberg, L., and Mohler, O. C.: 1950, Astrophys. J. 112, 289.Google Scholar
  18. Sears, R. L.: 1964, Astrophys. J. 140, 477.Google Scholar
  19. Spiegel, E. A.: 1963, Astrophys. J. 138, 216.Google Scholar
  20. Travis, L. D. and Matsushima, S.: 1973, Astrophys. J. 180, 975.Google Scholar
  21. Ulrich, R. K.: 1970a, Astrophys. Space Sci. 7, 183.Google Scholar
  22. Ulrich, R. K.: 1970b, Astrophys. Space Sci. 9, 80.Google Scholar
  23. Unno, W.: 1969, Publ. Astron. Soc. Japan 21, 240.Google Scholar
  24. Van der Borght, R.: 1971, Proc. Astron. Soc. Australia 2, 46.Google Scholar
  25. Waters, B. E.: 1971, Proc. Astron. Soc. Australia 2, 48.Google Scholar
  26. Waters, B. E. and Van der Borght, R.: 1972, Proc. Astron. Soc. Australia 2, 92.Google Scholar
  27. Watson, W. P.: 1970, Astrophys. J. 161, 139.Google Scholar
  28. Yun, H. S.: 1968, Ph.D. Thesis, Indiana University, p. 42.Google Scholar

Copyright information

© D. Reidel Publishing Company 1974

Authors and Affiliations

  • H. C. Spruit
    • 1
  1. 1.The Astronomical Institute at UtrechtUtrechtThe Netherlands

Personalised recommendations