Advertisement

Solar Physics

, Volume 17, Issue 1, pp 44–49 | Cite as

Origin of quiescent prominences

  • S. B. Pikel'ner
Article

Abstract

For stable equilibrium, prominences must be supported with magnetic lines of force leaning upon the photosphere and concave in their tops; however the general structure may be more complicated.

If such a field appears in the corona, the heating of the gas near the upper pit should be low, because Alfvén and slow waves do not propagate across magnetic lines and fast mode waves attenuate because of refraction. The gas of the corona, distributed along the magnetic lines tube, cannot keep balance, it should flow down in the pit, condense there and fall down into the chromosphere in some places. The prominence, therefore, originates in the matter of the chromosphere which is situated at the other end of the magnetic lines and flows through the corona under the effect of a siphon-type mechanism. A similar mechanism for chromospheric structures was earlier suggested by Meyer and Schmidt. A stationary stream along the tube has been calculated with allowance for the heat conductivity and radiative cooling of the corona gas. The stream is subsonic and is about 1015 cm−2 sec−1 which corresponds to the prominence formation time of the order of a day.

Keywords

Solar Wind Solar Phys Radiative Cool Thermal Instability Magnetic Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anzer, U. and Tandberg-Hanssen, E.: 1970, Solar Phys. 11, 61.CrossRefADSGoogle Scholar
  2. Brown, A.: 1958, Astrophys. J. 128, 646.CrossRefADSGoogle Scholar
  3. De Jager, C.: 1959, in Handbuch der Physik, Vol. 52, (ed. by S. Flugge), Berlin.Google Scholar
  4. Field, G. B.: 1965, Astrophys. J. 142, 531.CrossRefADSGoogle Scholar
  5. Ioshpa, B. A.: 1966, in Solar Activity, No. 3, Moscow.Google Scholar
  6. Kiepenheuer, K. O.: 1953, in The Sun, (ed. by G. P. Kuiper), Chicago.Google Scholar
  7. Kippenhahn, R. and Schülter, A.: 1957, Z. Astrophys. 43, 36.zbMATHADSGoogle Scholar
  8. Kleczek, J.: 1957, Bull. Astron. Inst. Czech. 8, 120.ADSGoogle Scholar
  9. Kleczek, J.: 1958, Bull. Astron. Inst. Czech. 9, 115.ADSGoogle Scholar
  10. Lüst, R. and Zirin, H.: 1960, Z. Astrophys. 49, 8.ADSGoogle Scholar
  11. Meyer, F. and Schmidt, H. U.: 1968a, Z. Angewandte Math. u. Mech. 48, 218.Google Scholar
  12. Meyer, F. and Schmidt, H. U.: 1968b, Astron. J. 73, S72.Google Scholar
  13. Nakagawa, Y.: 1970, Solar Phys. 11, 419.ADSGoogle Scholar
  14. Nakagawa, Y. and Malville, J. M.: 1969, Solar Phys. 9, 102.CrossRefADSGoogle Scholar
  15. Oster, L. and Sofia, S.: 1961, Astrophys. J. 134, 72.CrossRefADSGoogle Scholar
  16. Osterbrock, D. E.: 1961, Astrophys. J. 134, 347.CrossRefADSGoogle Scholar
  17. Parker, E. N.: 1953, Astrophys. J. 117, 431.CrossRefADSGoogle Scholar
  18. Pikel'ner, S. B.: 1960, Astron. Zh. 37, 616.ADSGoogle Scholar
  19. Pikel'ner, S. B. and Livshitz, M. A.: 1964, Astron. Zh. 41, 1007.ADSGoogle Scholar
  20. Pikel'ner, S. B.: 1969, Astron. Zh. 46, 328.ADSGoogle Scholar
  21. Pottasch, S. R.: 1965, Bull. Astron. Inst. Neth. 18, 7.ADSGoogle Scholar
  22. Raju, P. K.: 1968, Monthly Notices Roy. Astron. Soc. 139, 479.ADSGoogle Scholar
  23. Rust, D. M.: 1967, Astrophys. J. 150, 313.CrossRefADSGoogle Scholar
  24. Uchida, T., 1963, Publ. Astron. Soc. Japan 15, 65.ADSGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1971

Authors and Affiliations

  • S. B. Pikel'ner
    • 1
  1. 1.Sternberg Astronomical InstituteMoscow

Personalised recommendations