Solar Physics

, Volume 64, Issue 2, pp 303–321 | Cite as

Kink instability of solar coronal loops as the cause of solar flares

  • A. W. Hood
  • E. R. Priest


Solar coronal loops are observed to be remarkably stable structures. A magnetohydrodynamic stability analysis of a model loop by the energy method suggests that the main reason for stability is the fact that the ends of the loop are anchored in the dense photosphere. In addition to such line-tying, the effect of a radial pressure gradient is incorporated in the analysis.

Two-ribbon flares follow the eruption of an active region filament, which may lie along a magnetic flux tube. It is suggested that the eruption is caused by the kink instability, which sets in when the amount of magnetic twist in the flux tube exceeds a critical value. This value depends on the aspect ratio of the loop, the ratio of the plasma to magnetic pressure and the detailed transverse magnetic structure. For a force-free field of uniform twist the critical twist is 3.3π, and for other fields it is typically between 2π and 6π. Occasionally active region loops may become unstable and give rise to small loop flares, which may also be a result of the kink instability.


Flare Solar Flare Flux Tube Magnetic Pressure Radial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anzer, U.: 1968, Solar Phys. 3, 298.Google Scholar
  2. Bernstein, I. B., Frieman, E. A., Kruskal, M. D., and Kulsrud, R. M.: 1958, Proc. Roy. Soc. London A244, 17.Google Scholar
  3. Foukal, P.: 1975, Solar Phys. 43, 327.Google Scholar
  4. Giachetti, R., Van Hoven, G., and Chiuderi, C.: 1977, Solar Phys. 55, 371.Google Scholar
  5. Gibson, E. G.: 1977, Solar Phys. 53, 123.Google Scholar
  6. Gold, T. and Hoyle, F.: 1960, Monthly Notices Roy. Astron. Soc. 120, 89.Google Scholar
  7. Gradshteyn, I. S. and Ryzhik, I. M.: 1965, Tables of Integrals, Series and Products, Academic Press.Google Scholar
  8. Heyvaerts, J., Priest, E. R., and Rust, D. M.: 1977, Astrophys. J. 216, 123.Google Scholar
  9. Hood, A. W.: 1979, Ph.D. Thesis, St. Andrews University.Google Scholar
  10. Hood, A. W. and Priest, E. R.: 1979a, Astron. Astrophys., in press.Google Scholar
  11. Hood, A. W. and Priest, E. R.: 1979b, submitted.Google Scholar
  12. Jeffrey, A. and Taniuti, T.: 1966, Magnetohydrodynamic Stability and Thermonuclear Containment, Academic Press.Google Scholar
  13. Jordan, C.: 1975, in S. R. Kane (ed.), ‘Solar Gamma-, X-, and EUV Radiations’, IAU Symp. 68, 109.Google Scholar
  14. Kruskal, M. D., Johnson, J. L., Gottlieb, M. B., and Goldman, L. M.: 1958, Phys. Fluids 1, 421.Google Scholar
  15. Newcomb, W. A.: 1960, Ann. Phys. 10, 232.Google Scholar
  16. Priest, E. R.: 1976a, in D. J. Williams (ed.), ‘Physics of Solar Planetary Environment’, Am. Geophys. Union 1, 144.Google Scholar
  17. Priest, E. R.: 1976b, Solar Phys. 47, 41.Google Scholar
  18. Priest, E. R.: 1978, Solar Phys. 58, 57.Google Scholar
  19. Raadu, M. A.: 1972, Solar Phys. 22, 425.Google Scholar
  20. Sakurai, T.: 1976, Publ. Astron. Soc. Japan 28, 177.Google Scholar
  21. Shafranov, V. D.: 1957, J. Nucl. Energy II 5, 86.Google Scholar
  22. Suydam, B. R.: 1958, International Conference on the Peaceful Uses of Atomic Energy, 2nd Geneva, p. 187.Google Scholar
  23. Tasso, H.: 1975, Phys. Fluids 17, 1131.Google Scholar
  24. Tur, T. J. and Priest, E. R.: 1976, Solar Phys. 48, 89.Google Scholar
  25. Tur, T. J. and Priest, E. R.: 1978, Solar Phys. 58, 181.Google Scholar
  26. Wesson, J. A.: 1978, Nuclear Fusion 18, 87.Google Scholar

Copyright information

© D. Reidel Publishing Co 1979

Authors and Affiliations

  • A. W. Hood
    • 1
  • E. R. Priest
    • 1
  1. 1.Applied Mathematics DepartmentThe UniversitySt. AndrewsScotland

Personalised recommendations