Advertisement

Solar Physics

, Volume 64, Issue 2, pp 287–301 | Cite as

Heating of coronal loops by fast mode MHD waves

  • Shadia Rifai Habbal
  • Egil Leer
  • Thomas E. Holzer
Article

Abstract

A possible mechanism for the formation and heating of coronal loops through the propagation and damping of fast mode waves is proposed and studied in detail. Loop-like field structures are represented by a dipole field with the point dipole at a given distance below the solar surface. The density of the medium is determined by hydrostatic equilibrium along the field lines in an isothermal atmosphere. The fast mode waves propagating outward from the coronal base are refracted into regions with a low Alfvén speed and suffer collisionless damping when the gas pressure becomes comparable to the magnetic pressure. The propagation and damping of these waves are studied for three different cases: a uniform density at the coronal base, a density depletion within a given flux tube, and a density enhancement within a given flux tube. The fast mode waves are found to be important in the formation and heating of the loops if the wave energy flux density is of the order 105 ergs cm-2 s-1 at the coronal base.

Keywords

Field Line Flux Tube Solar Surface Coronal Loop Fast Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antiochos, S. K. and Sturrock, P. A.: 1976, Solar Phys. 49, 359.Google Scholar
  2. Athay, R. G. and White, O. R.: 1978, Astrophys. J. 226, 1135.Google Scholar
  3. Barnes, A.: 1966, Phys. Fluids 9, 1483.Google Scholar
  4. Budden, K.: 1961, Radio Waves in the Ionosphere, Cambridge University Press.Google Scholar
  5. Cox, D. and Tucker, W. H.: 1969, Astrophys. J. 156, 87.Google Scholar
  6. Dulk, G. A. and McLean, D. J.: 1978, Solar Phys. 57, 279.Google Scholar
  7. Foukal, P. V.: 1975, Solar Phys. 43, 327.Google Scholar
  8. Foukal, P. V.: 1978, Astrophys. J. 223, 1046.Google Scholar
  9. Hearn, A. G.: 1975, Astron. Astrophys. 40, 355.Google Scholar
  10. Hollweg, J. V. and Smith, D. F.: 1976, J. Plasma Phys. 15, 245.Google Scholar
  11. Hung, R. J. and Barnes, A.: 1973, Astrophys. J. 181, 183.Google Scholar
  12. Ionson, J. A.: 1978, Astrophys. J. 226, 650.Google Scholar
  13. Jackson, J. D.: 1962, Classical Electrodynamics, John Wiley and Sons.Google Scholar
  14. Krieger, A. S.: 1977, ‘X-Ray Observations of Solar Structural Features’, in Proceedings of the OSO Workshop, LASP, University of Colorado, Boulder.Google Scholar
  15. Levine, R. H. and Withbroe, G. L.: 1977, Solar Phys, 51, 83.Google Scholar
  16. Osterbrock, D. E.: 1961, Astrophys. J. 134, 347.Google Scholar
  17. Priest, E. R.: 1978, Solar Phys. 58, 57.Google Scholar
  18. Rosner, R., Golub, L., Coppi, B., and Vaiana, G.: 1978, Astrophys. J. 222, 317.Google Scholar
  19. Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, Astrophys. J. 220, 643.Google Scholar
  20. Uchida, Y. and Kaburaki, O.: 1974, Solar Phys. 35, 451.Google Scholar
  21. Uchida, Y., Altschuler, M. D., and Newkirk, G.: 1973, Solar Phys. 28, 495.Google Scholar
  22. Vaiana, G. S., Krieger, A. S., Timothy, A. F., and Zombeck, M.: 1976, Astrophys. Space Sci. 39, 75.Google Scholar
  23. Wentzel, D. G.: 1974, Solar Phys. 39, 129.Google Scholar
  24. Wentzel, D. G.: 1978, Rev. Geophys. Space Phys. 16, 757.Google Scholar
  25. Withbroe, G. L. and Noyes, R. W.: 1977, Ann. Rev. Astron. Astrophys. 15, 363.Google Scholar

Copyright information

© D. Reidel Publishing Co 1979

Authors and Affiliations

  • Shadia Rifai Habbal
    • 1
  • Egil Leer
    • 1
  • Thomas E. Holzer
    • 1
  1. 1.High Altitude Observatory, National Center for Atmospheric ResearchBoulderU.S.A.

Personalised recommendations