Solar Physics

, Volume 70, Issue 2, pp 259–272 | Cite as

Mathematical modelling of the sunspot cycle

  • F. De Meyer


The sunspot record for the time interval 1749–1977 can be represented conveniently by an harmonic model comprising a relatively large number of lines. Solar activity can otherwise be considered as a sequence of partly overlapping events, triggered periodically at intervals of the order of 11 years. Each individual cycle is approximated by a function of the Maxwell distribution type; the resulting impulse model consists of the superposition of the independent pulses. Application of these two models for the prediction of annual values of the Wolf sunspot numbers leads to controversial results. Mathematical modelling of the sunspot time series does not give an unambiguous result.


Time Series Mathematical Modelling Solar Activity Sunspot Number Distribution Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bard, Y.: 1974, Nonlinear Parameter Estimation, Academic Press, N.Y.Google Scholar
  2. Blackman, R. B. and Tukey, J. W.: 1959, The Measurement of Power Spectra, Dover, N.Y.Google Scholar
  3. Brown, G. M.: 1974, Nature 251, 592.Google Scholar
  4. Chen, W. Y. and Stegen, G. R.: 1974, J. Geophys. Res. 79, 20, 3019.Google Scholar
  5. Cohen, T. J. and Lintz, P. R.: 1974, Nature 250, 398.Google Scholar
  6. Cole, T. W.: 1973, Solar Phys. 30, 103.Google Scholar
  7. Currie, R. G.: 1973, Astrophys. Space Sci. 20, 509.Google Scholar
  8. Dodson, H. W. and Hedeman, E. R.: 1972, in E. R. Dyer (ed.), Solar-Terrestrial Physics, Part I, D. Reidel Publ. Co., Dordrecht, Holland, p. 151.Google Scholar
  9. Gleissberg, W.: 1952, Die Häufigkeit der Sonnenflecken, Akademie-Verlag, Berlin.Google Scholar
  10. Harwood, J. M. and Malin, S. R. C.: 1977, Geophys. J. Roy. Astron. Soc. 50, 605.Google Scholar
  11. Hill, J. R.: 1977, Nature 266, 151.Google Scholar
  12. Kane, R. P.: 1978, Nature 274, 139.Google Scholar
  13. McNish, A. G. and Lincoln, J. V.: 1949, Trans. Am. Geophys. Union 30, 673.Google Scholar
  14. Mörth, H. T. and Schlamminger, L.: 1979, in B. M. McCorman and T. A. Seliga (eds.), Solar-Terrestrial Influences on Weather and Climates, D. Reidel Publ. Co., Dordrecht, Holland, p. 193.Google Scholar
  15. Ramaswany, G.: 1977, Nature 265, 713.Google Scholar
  16. Schatten, K. H., Scherrer, P. H., Svalgaard, L., and Wilcox, J. M.: 1978, Geophys. Res. Letters 5, 411.Google Scholar
  17. Smythe, C. M. and Eddy, J. A.: 1977, Nature 266, 1977.Google Scholar
  18. Sneyers, R.: 1976, J. Appl. Met. 15, 387.Google Scholar
  19. Ulrych, T. J. and Clayton, R. W.: 1976, Phys. Earth. Planet. Interiors 12, 188.Google Scholar
  20. Wolff, C. L.: 1976, Astrophys. J. 205, 612.Google Scholar
  21. Zhukov, L. V. and Muzalevskii, Yu. S.: 1969, Astron. Zh. 46, 600 (English transl. in Soviet Astron.-AJ 13, 473).Google Scholar

Copyright information

© D. Reidel Publishing Co 1981

Authors and Affiliations

  • F. De Meyer
    • 1
  1. 1.Royal Meteorological Institute of BelgiumBrusselsBelgium

Personalised recommendations