, Volume 109, Issue 1, pp 5–14

Vegetation changes along a precipitation gradient in Central Argentina

  • M. Cabido
  • C. González
  • A. Acosta
  • S. Díaz


Changes in vegetation along a precipitation gradient in Central Argentina were studied. Floristic samples were taken along an east-west transect of about 300 km. Correlation analysis between precipitation and ordination axes was used to provide an environmental interpretation of vegetation variability.

Floristic analysis produced an ordination of plant communities from evergreen forests (precipitation >500 mm) to desert shrublands and therophyte communities (precipitation <200 mm). Results showed a trend of floristic and structural impoverishment towards the west. There is a replacement of species along the transect and a shift in dominant growth forms. The first ordination axis is significantly, negatively correlated with annual precipitation.


Chaco vegetation Humidity gradient Monte vegetation Physiognomic plant characters Vegetation structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbour M. G., MacMahon J. A., BambergS. A. & Ludwig J. A. 1977. Growth and development, form and function. In: MabryT. J., HunzikerJ. H. & DiFeoD. R. (eds.) Creosote Bush: Biology and Chemistry of Larrea in New World Deserts. Dowden, Hutchinson & Ross, Pennsylvania 48–91.Google Scholar
  2. Braun-Blanquet J. 1950. Sociologia Vegetal. ACME, Bs. As. Cabrera, A. 1976. Regiones Fitogeográficas Argentinas. Acme, Buenos Aires.Google Scholar
  3. Cabido, M., Acosta, A., Carranza, M. L. & Díaz, S. La vegetación del Chaco árido de el W de la Provincia de Córdoba, Argentina. Doc. phytosociol. 13 (in press).Google Scholar
  4. Chang D. H. S. & Gauch H. G. 1986. Multivariate analysis of plant communities and environmental factors in Ngari, Tibet. Ecology 67: 1568–1575.Google Scholar
  5. Cornelius J., Kemp P., Ludwig J. & Cunningham G. 1991. The distribution of vascular plant species and guilds in space and time along a desert gradient. J. Veg. Sci. 2: 59–72.Google Scholar
  6. Dannin A. & Orshan G. 1990. The distribution of Raunkiaer life forms in Israel in relation to the environment. J. Veg. Sci. 1: 41–48.Google Scholar
  7. Dargie T. C. D. & El Demerdash M. A. 1991. A quantitative study of vegetation-environment relationships in two Egyptian deserts. J. Veg. Sci. 2: 3–10.Google Scholar
  8. De Candollea. 1874. Constitution dans le regne vegetal de groupe physiologiques applicable a la Geographie botanique ancienne et moderne. Arch. Sci. Phys. Nat. 50: 5–42.Google Scholar
  9. Hauman, L. 1920. Ganadería y Geobotánica en la Argentina. Rev. Centro Est. Agron. y Vet. Bs. As. 102.Google Scholar
  10. Hill M. & GauchH. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 47: 47–58.Google Scholar
  11. Knight D. H. & Loucks O. L. 1969. A quantitative analysis of Wisconsin forest vegetation on the basis of plant function and gross morphology. Ecology 50: 219–234.Google Scholar
  12. Lorentz, P. 1876. Cuadro de la Vegetación de la República Argentina. In: Napp. R. (ed.) La República Argentina. Bs. As. 77–136.Google Scholar
  13. Mooney H. A. & LLoyd Dunn E. 1970. Convergent evolution of mediterranean climate evergreen sclerophyll shrubs. Evol. 24: 292–303.Google Scholar
  14. Morello, J. 1958. La provincia Fitogeográfica del Monte. Op. Lilloana II, Tucumán.Google Scholar
  15. Noy-Meir I. 1973. Desert ecosystems: Environment and producers. Ann. Rev. Ecol. Syst. 4: 25–52.Google Scholar
  16. Parodi, L. R. 1945. Las regiones fitogeográficas argentinas y sus relaciones con la industria forestal. Plant and Plant Science in Latin America 127–132.Google Scholar
  17. Parsons J. D. & Moldenke R. A. 1975. Convergence in vegetation structure along analogous climatic gradients in California and Chile. Ecology 56: 943–950.Google Scholar
  18. Sarmiento G. 1972. Ecological and floristic convergences between seasonal plants formations of tropical and subtropical South America. The J. Ecol. 60: 367–410.Google Scholar
  19. Shmida, A. 1985. Biogeography of the desert flora. In: Evenari, M., Noy-Meir, I. & Goodall, D. W. (eds.) Hot Deserts and Arid Shrublands Ecosystems of the world, Amsterdam 23–77.Google Scholar
  20. Shmida, A. & Burguess, T. L. 1988. Plant growth-forms strategies and vegetation types in arid environments. In: Werger, M. J. A. (ed.) International Symposium of Vegetational Structure, The Hague 1–31.Google Scholar
  21. Shmida, A. & Whittaker, R. H. 1979. Convergent evolution of arid regions in the New and Old World. In: Tuxen, R. (ed.) Werden und Vergehen von Pflanzengesellschaften, Vaduz 437–450.Google Scholar
  22. Walter H. 1973. Vegetation of the earth in relation to climate and the ecophysiological conditions. Springer-Verlag, New York.Google Scholar
  23. Westman W. E. 1981. Factors influencing the distribution of species of Californian coastal sage scrub. Ecology 62: 439–455.Google Scholar
  24. Whittaker R. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monographs 26: 1–80.Google Scholar
  25. Whittaker R. H. 1977. Evolution of species diversity in land communities. Evol. Biol. 10: 1–67.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • M. Cabido
    • 1
  • C. González
    • 1
  • A. Acosta
    • 1
  • S. Díaz
    • 1
  1. 1.Centro de Ecología y Recursos Naturales RenovablesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations