Geometriae Dedicata

, Volume 19, Issue 3, pp 247–270 | Cite as

The theory of convex geometries

  • Paul H. Edelman
  • Robert E. Jamison


Convex Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner, M., Combinatorial Theory, Springer-Verlag, New York, 1979.Google Scholar
  2. 2.
    Avann, S. P., ‘Applications of Join-Irreducible Excess Functions to Semi-modular Lattices’, Math. Ann. 142 (1961), 345–354.Google Scholar
  3. 3.
    Baclawski, K., ‘Cohen-Macaulay Ordered Sets’, J. Algebra 63 (1980), 226–258.Google Scholar
  4. 4.
    Björner, A., ‘Shellable and Cohen-Macaulay Partially Ordered Sets’, Trans. Amer. Math. Soc. 260 (1980), 159–183.Google Scholar
  5. 5.
    Björner, A., ‘Homotopy Type of Posets and Lattice Complementation’, J. Comb. Theory (A) 30 (1981), 90–100.Google Scholar
  6. 6.
    Björner, A., ‘On Matroids, Groups and Exchanges’ (preprint), Stockholm, 1983.Google Scholar
  7. 7.
    Björner, A., Garsia, A., and Stanley, R., ‘An Introduction to Cohen-Macaulay Partially Ordered Sets’, in Ordered Sets (I. Rival (ed.)), D. Reidel, Dordrecht, 1982.Google Scholar
  8. 8.
    Bland, R. G. and Las Vergnas, M., ‘Orientability of Matroids’, J. Comb. Theory (B), 24 (1978), 94–123.Google Scholar
  9. 9.
    Cordovil, R., ‘Oriented Matroids of Rank 3 and Arrangements of Pseudolines’, Ann. Discrete Math. 17 (1983), 219–223.Google Scholar
  10. 10.
    Crapo, H. H., ‘Selectors’, Adv. in Math. 54 (1984), 233–277.Google Scholar
  11. 11.
    Danaraj, G. and Klee, V., ‘Shellings of Spheres and Polytopes’, Duke Math. J. 41 (1974), 443–451.Google Scholar
  12. 12.
    Dushnik, B. and Miller, E., ‘Partially Ordered Sets’, Amer. J. Math. 63 (1941), 600–610.Google Scholar
  13. 13.
    Dilworth, R. P., ‘Lattices with Unique Irreducible Decompositions’, Ann. Math. 41 (1940), 771–777.Google Scholar
  14. 14.
    Edelman, P. H., ‘The Lattice of Convex Sets of an Oriented Matroid’, J. Comb. Theory (B) 33 (1982), 239–244.Google Scholar
  15. 15.
    Edelman, P. H., ‘Meet-Distributive Lattices and the Anti-exchange Closure’, Alg. Univ. 10 (1980), 290–299.Google Scholar
  16. 16.
    Edelman, P. H., ‘Zeta Polynomials and the Möbius Function’, Europ. J. Comb. 1 (1980), 335–340.Google Scholar
  17. 17.
    Farber, M. and Jamison, R., ‘Convexity in Graphs and Hypergraphs’, Report CORR 83–46, University of Waterloo, 1983.Google Scholar
  18. 18.
    Folkman, J. and Lawrence, J., ‘Oriented Matroids’, J. Comb. Theory (B) 25 (1978), 199–236.Google Scholar
  19. 19.
    Greene, C. and Kleitman, D. J., ‘The Structure of Sperner κ-Families’, J. Comb. Theory (A) 20 (1976), 41–68.Google Scholar
  20. 20.
    Goodman, J. E. and Pollack, R., ‘Helly-Type Theorems for Pseudoline Arrangements in P 2’, J. Comb. Theory (A) 32 (1982), 1–19.Google Scholar
  21. 21.
    Goodman, J. E. and Pollack, R., ‘On the Combinatorial Classification of Nondegenerate Configurations in the Plane’, J. Comb. Theory (A) 29 (1980), 120–235.Google Scholar
  22. 22.
    Goodman, J. E. and Pollack, R., ‘A Theorem of Ordered Duality’, Geom. Dedicata 12 (1982), 63–74.Google Scholar
  23. 23.
    Graham, R. L., Simonovitz, M. and Sos, V. T., ‘A Note on the Intersection Properties of Subsets of the Integers’, J. Comb. Theory (A) 28 (1980), 107–110.Google Scholar
  24. 24.
    Harary, F., Graph Theory, Addison-Wesley, London, 1969.Google Scholar
  25. 25.
    Hoffman, A., ‘Binding Constraints and Helly Numbers’, Ann. N.Y. Acad. Sci., Second Int. Conf. Comb. Math. 319 (1979), 284–288.Google Scholar
  26. 26.
    Howorka, E., ‘A Characterization of Ptolemaic Graphs; Survey of Results’, Proc. 8th SE Conf. Comb., Graph Theory and Comp., pp. 355–361.Google Scholar
  27. 27.
    Jamison-Waldner, R. E., ‘Partition Numbers for Trees and Ordered Sets’, Pacific J. Math. 96 (1981), 115–140.Google Scholar
  28. 28.
    Jamison-Waldner, R. E., ‘Convexity and Block Graphs’, Congressus Numerantium 33 (1981), 129–142.Google Scholar
  29. 29.
    Jamison-Waldner, R. E., ‘Tietze's Convexity Theorem for Semilattices and Lattices’, Semigroup Forum 15 (1978), 357–373.Google Scholar
  30. 30.
    Jamison-Waldner, R. E., ‘A Perspective on Abstract Convexity: Classifying Alignments by Varieties’, in Convexity and Related Combinatorial Geometry (D. C. Kay and M. Breen (eds)), Marcel Dekker, Inc., New York, 1982.Google Scholar
  31. 31.
    Jamison-Waldner, R. E., ‘A Convexity Characterization of Ordered Sets’, Proc. 10th SE Conf. Comb., Graph Theory, and Comp. pp. 529–540.Google Scholar
  32. 32.
    Jamison-Waldner, R. E., ‘Copoints in Antimatroids’, Proc. 11th SE Conf. Comb., Graph Theory, and Comput., Congressus Numerantium 29 (1980), 535–544.Google Scholar
  33. 33.
    Korte, B. and Lovasz, L., ‘Mathematical Structures Underlying Greedy Algorithms’, in Fundamentals of Computation Theory, Lecture Notes in Computer Science 117, Springer, Berlin, 1981, pp. 205–209.Google Scholar
  34. 34.
    Korte, B. and Lovasz, L., ‘Greedoids — a Structural Framework for the Greedy Algorithms’, Proc. Silver Jubilee Conf. on Combinatorics, Waterloo, June 1982, Academic Press, London.Google Scholar
  35. 35.
    Korte, B. and Lovasz, L., ‘Structural Properties of Greedoids’, Combinatorica 3 (1983), 359–374.Google Scholar
  36. 36.
    Korte, B. and Lovasz, L., ‘Shelling Structures, Convexity and a Happy End’, in Graph Theory and Combinatorics, Proceedings of the Cambridge Combinatorial Conference in honor of Paul Erdös, B. Bollobas (ed.), Academic Press, London (1984), 217–232.Google Scholar
  37. 37.
    Korte, B. and Lovasz, L., ‘Basis Graphs of Greedoids and Two-Connectivity’, Report No. 84324-OR, Institute of Operations Research, University of Bonn, 1984.Google Scholar
  38. 38.
    Las Vergnas, M., ‘Convexity in Oriented Matroids’, J. Comb. Theory (B) 29 (1980), 231–243.Google Scholar
  39. 39.
    Rota, G.-C., ‘On the Foundations of Combinatorial Theory: I. Theory of Möbius Functions’, Z. Warsch. Verw. Gebiet 2 (1964), 340–368.Google Scholar
  40. 40.
    Saks, M. E. (personal communications), 1984.Google Scholar
  41. 41.
    Stanley, R. P., ‘Combinatorial Reciprocity Theorems’, Adv. in Math. 14 (1974), 194–253.Google Scholar
  42. 42.
    Stanley, R. P., ‘Balanced Cohen-Macaulay Complexes’, Trans. Amer. Math. Soc. 249 (1979), 139–157.Google Scholar
  43. 43.
    Edelman, P. H. and Klingsberg, P., The subposet lattice and the order polynomial, Europ. J. Comb., 3 (1982), 341–346.Google Scholar
  44. 44.
    Berge, C., Principles of Combinatorics, Academic Press, New York, 1970.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Paul H. Edelman
    • 1
  • Robert E. Jamison
    • 2
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Department of Mathematical SciencesClemson UniversityClemsonU.S.A.

Personalised recommendations