Advertisement

Climatic Change

, Volume 17, Issue 1, pp 13–25 | Cite as

Grassland biogeochemistry: Links to atmospheric processes

  • D. S. Schimel
  • W. J. Parton
  • T. G. F. Kittel
  • D. S. Ojima
  • C. V. Cole
Article

Abstract

Regional modeling is an essential step in scaling plot measurements of biogeochemical cycling to global scales for use in coupled atmosphere-biosphere studies. We present a model of carbon and nitrogen biogeochemistry for the U.S. Central Grasslands region based on laboratory, field, and modeling studies. Model simulations of the geography of C and N biogeochemistry adequately fit observed data. Model results show geographic patterns of cycling rates and element storage to be a complex function of the interaction of climatic and soil properties. The model also includes regional trace gas simulation, providing a link between studies of atmospheric geochemistry and ecosystem function. The model simulates nitrogenous trace gas emission rates as a function of N turnover and indicates that they are variable across the grasslands. We studied effects of changing climate using information from a global climate model. Simulations showed that increases in temperature and associated changes in precipitation caused increases in decomposition and long-term emission of Co2 from grassland soils. Nutrient release associated with the loss of soil organic matter caused increases in net primary production, demonstrating that nutrient interactions are a major control over vegetation response to climate change.

Keywords

Global Climate Model Grassland Soil Cycling Rate Element Storage Nutrient Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J. D., Melillo, J. M. and Federer, C. A.: 1982, ‘Predicting the Effects of Rotation Length, Harvest Intensity and Fertilization on Fiber Yields from Northern Hardwood Forests in New England’, Forest Sci. 28, 31–45.Google Scholar
  2. Avissar, R. and Pielke, R. A.: 1989, ‘A Parameterization of Heterogeneous Land Surfaces for Atmospheric Numerical Models and Its Impact on Regional Meteorology’, Mon. Wea. Rev. 117, 2113–2136.Google Scholar
  3. Balesdent, J. and Mariotti, A.: 1987, ‘Natural 13C Abundances as a Tracer for Studies of Soil Organic Matter Dynamics’, Soil Bio. Biochem. 19, 25–30.Google Scholar
  4. Bolin, B. and Cook, R. B. (eds.): 1983, The Major Biogeochemical Cycles and Their Interactions. SCOPE 21, Edited by P. G. Risser, John Wiley and Sons, New York; ICSU Press, Paris, France.Google Scholar
  5. Bowden, W. B.: 1986, ‘Gaseous Nitrogen Emissions from Undisturbed Terrestrial Ecosystems: An Assessment of Their Impacts on Local and Global Nitrogen Budgets’, Biogeochemistry 2, 249–280.Google Scholar
  6. Detwiler, R. P.: 1986, ‘Land Use Changes and the Global Carbon Cycle: The Role of Tropical Soils’, Biogeochemistry 2, 67–94.Google Scholar
  7. Dickinson, R. E.: 1984, ‘Modelling Evapotranspiration for Three-Dimensional Global Climate Models’, in J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity. Geophysical Monograph 29, American Geophysical Union, Washington D.C., pp. 58–72.Google Scholar
  8. Dickinson, R. E. and Cicerone, R. J.: 1986, ‘Future Global Warming from Atmospheric Trace Gases’, Nature 319, 109–115.Google Scholar
  9. Gildea, M. P., Moore, B., and Vorosmarty, C. J.: 1986, ‘A Global Model of Nutrient Cycling: I. Introduction, Model Structure and Terrestrial Mobilization of Nutrients’, in D. L. Correll (ed.), Watershed Research Perspectives. Smithsonian Institution Press, Washington, D.C., pp. 1–31.Google Scholar
  10. Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., and Lerner, J.: 1984, ‘Climate Sensitivity: Analysis of Feedback Mechanisms’, in J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity. American Geophysical Union, Washington, D.C., pp. 130–163.Google Scholar
  11. Holland, E. A. and Coleman, D. C.: 1987, ‘Litter Placement Effects on Microbial and Organic Matter Dynamics in an Agroecosystem’, Ecology 68, 425–433.Google Scholar
  12. Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., and Woodwell, G. M.: 1983, ‘Changes in the Carbon Content of Terrestrial Biota and Soils Between 1860 and 1980: A Net Release of Co2 to the Atmosphere’, Ecol. Monogr. 53, 235–262.Google Scholar
  13. Jansson, S. L.: 1958, ‘Tracer Studies on Nitrogen Transformations in Soil with Special Attention to Mineralization-Immobilization Relationships’, Lantsbrukshogs-Kolans Annaler 24, 101–361, Ann. Roy. Agr. Coll. Sweden.Google Scholar
  14. Jenny, H.: 1941, ‘Factors of Soil Formation’, McGraw-Hill, New York, N.Y.Google Scholar
  15. Martel, Y. A. and Paul, E. A.: 1974, ‘Effects of Cultivation on Organic Matter of Grassland Soils as Determined by Fractionation and Radio-Carbon Dating’, Can. J. Soil Sci. 54, 419–426.Google Scholar
  16. National Atmospheric Deposition Program/National Trends Network: 1987, Precipitation Weighted Average Report: Fall 1978–Spring 1986, National Atmospheric Deposition Program, 15 pp.Google Scholar
  17. Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: 1987, ‘Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands’, Soil Sci. Soc. Amer. J. 51 (5), 1173–1179.Google Scholar
  18. Parton, W. J., Stewart, J. W. B., and Cole, C. V.: 1988a, ‘Dynamics of C, N, P and S in Grassland Soils: A Model’, Biogeochemistry 5, 109–131.Google Scholar
  19. Parton, W. J., Mosier, A. R., and Schimel, D. S.: 1988b, ‘Rates and Pathways of Nitrous Oxide Production in a Shortgrass Steppe’, Biogeochemistry 6, 45–58.Google Scholar
  20. Pastor, J. and Post, W. M.: 1986, ‘Influence of Climate, Soil Moisture and Succession on Forest Carbon and Nitrogen Cycles’, Biogeochemistry 2, 3–27.Google Scholar
  21. Paul, E. A. and Van Veen, J.: 1978, ‘The Use of Tracers to Determine the Dynamic Nature of Organic Matter’, Trans. 11th Int. Congr. Soil Science 3, 61–102.Google Scholar
  22. Pinck, L. A., Allison, F. E., and Sherman, M. S.: 1950, ‘Maintenance of Soil Organic Matter: II. Losses of Carbon and Nitrogen from Young and Mature Plant Material During Decomposition in Soil’, Soil Science 69, 391–401.Google Scholar
  23. Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R., and Schlesinger, M.: 1987, ‘Climate-Chemical Interactions and Effects of Changing Atmospheric Trace Gases’, Rev. Geophys. 25, 1441–1482.Google Scholar
  24. Rina, D. and Lebedeff, S.: 1984, Potential Climatic Impacts of Increasing Atmospheric Co2 with Emphasis on Water Availability and Hydrology in the United States. EPA Report, NASA Goddard Space Flight Center, Institute for Space Studies, New York, NY, 96 pp.Google Scholar
  25. Robertson, G. P. and Tiedje, J. M.: 1987, ‘Nitrous Oxide Sources in Aerobic Soils: Nitrification, Denitrification, and Other Biological Processes’, Soil Biol. Biochem. 19, 187–194.Google Scholar
  26. Schimel, D. S.: 1986, ‘Carbon and Nitrogen Turnover in Adjacent Grassland and Cropland Ecosystems’, Biogeochemistry 2, 345–357.Google Scholar
  27. Schimel, D. S., Coleman, D. C., and Horton, K. A.: 1985, ‘Soil Organic Matter Dynamics in Paired Rangeland and Cropland Toposequences in North Dakota’, Geoderma 36, 201–214.Google Scholar
  28. Schimel, D. S., Parton, W. J., Adamsen, F. J., Woodmansee, R. G., Senft, R. L., and Stillwell, M. A.: 1986, ‘The Role of Cattle in the Volatile Loss of Nitrogen from a Shortgrass Steppe’, Biogeochemistry 2, 39–52.Google Scholar
  29. Segal, M., Avissar, R., McCumber, M. C., and Pielke, R. A.: 1988, ‘Evaluation of Vegetation Effects on the Generation and Modification of Mesoscale Circulations’, J. Atmos. Sci. 45, 2268–2392.Google Scholar
  30. Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: 1986, ‘A Simple Biosphere (SiB) Model for Use Within General Circulation Models’, J. Atmos. Sci. 43, 505–531.Google Scholar
  31. Stevenson, F. J.: 1986, Cycles of Soil Carbon, Nitrogen, Phosphorus, Sulfur, and Micronutrients. John Wiley and Sons, New York.Google Scholar
  32. USDA-Soil Conservation Service. National Soil Survey Laboratory, Midwest National Technical Center, Lincoln, Nebraska, unpublished data.Google Scholar
  33. Vorosmarty, C. J., Gildea, M. P., and Moore, B.: 1986, ‘A Global Model of Nutrient Cycling: II. Aquatic Processing, Retention and Distribution of Nutrients in Large Drainage Basins’, in D. L. Correll (ed.), Watershed Research Perspectives. Smithsonian Institution Press, Washington, D.C., pp. 32–56.Google Scholar
  34. Waring, R. H., Aber, J. D., Melillo, J. M., and Moore, III, B.: 1986, ‘Precursors of Change in Terrestrial Ecosystems’, Bioscience 36, 433–438.Google Scholar
  35. Wilson, M. F., Henderson-Sellers, A., Dickinson, R. E., and Kennedy, P. J.: 1987, ‘Sensitivity of the Biosphere/Atmosphere Transfer Scheme (BATS) to the Inclusion of Variable Soil Characteristics’, J. Climate Appl. Meteor. 26, 341–362.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • D. S. Schimel
    • 1
  • W. J. Parton
    • 2
  • T. G. F. Kittel
    • 3
  • D. S. Ojima
    • 4
  • C. V. Cole
    • 5
  1. 1.NASA Ames Research CenterMoffett FieldU.S.A.
  2. 2.Natural Resource Ecology Laboratory, Colorado State UniversityFort CollinsU.S.A.
  3. 3.Natural Resource Ecology Laboratory and Cooperative Institute for Research in the Atmosphere, Colorado State UniversityFort CollinsU.S.A.
  4. 4.Natural Resource Ecology Laboratory, Colorado State UniversityFort CollinsU.S.A.
  5. 5.U.S. Department of Agriculture, Agriculture Research Service and Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsU.S.A.

Personalised recommendations