Solar Physics

, Volume 115, Issue 2, pp 397–408 | Cite as

On the long-term secular increase in sunspot number

  • Robert M. Wilson


Correlated with the maximum amplitude (Rmax) of the sunspot cycle are the sum (Rsum) and the mean (Rmean) of sunspot number over the duration of the cycle, having a correlation coefficient r equal to 0.925 and 0.960, respectively. Runs tests of Rmax, Rsum, and Rmean for cycles 0–21 have probabilities of randomness P equal to 6.3, 1.2, and 9.2%, respectively, indicating a tendency for these solar-cycle related parameters to be nonrandomly distributed. The past record of these parameters can be described using a simple two-parameter secular fit, one parameter being an 8-cycle modulation (the so-called ‘Gleissberg cycle’ or ‘long period’) and the other being a long-term general (linear) increase lasting tens of cycles. For each of the solar-cycle related parameters, the secular fit has an r equal to about 0.7–0.8, implying that about 50–60% of the variation in Rmax, Rsum, and Rmean can be accounted for by the variation in the secular fit.

Extrapolation of the two-parameter secular fit of Rmax to cycle 22 suggests that the present cycle will have an Rmax = 74.5 ± 49.0, where the error bar equals ± 2 standard errors; hence, the maximum amplitude for cycle 22 should be lower than about 125 when sunspot number is expressed as an annual average or it should be lower than about 130 when sunspot number is expressed as a smoothed (13-month running mean) average. The long-term general increase in sunspot number appears to have begun about the time of the Maunder minimum, implying that the 314-yr periodicity found in ancient varve data may not be a dominant feature of present sunspot cycles.


Standard Error Maximum Amplitude General Increase Annual Average Related Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, J. A., Sargent, H. H., III, and Tryon, P. V.: 1980a, in R. O. Pepin, J. A. Eddy, and R. B. Merrill (eds.), The Ancient Sun, Pergamon Press, New York, p. 159.Google Scholar
  2. Barnes, J. A., Sargent, H. H., III, and Tryon, P. V.: 1980b, Sunspot Cycle Simulation Using a Narrowband Gaussian Process, NOAA TN-1022, U.S. Dept. of Commerce, Washington, D.C.Google Scholar
  3. Bracewell, R. N. and Williams, G. E.: 1986, Monthly Notices Roy. Astron. Soc. 223, 457.Google Scholar
  4. Crowley, K. D., Duchon, C. E., and Rhi, J.: 1986, J. Geophys. Res. 91(D8), 8637.Google Scholar
  5. Eddy, J. A.: 1976, Science 192, 1189.Google Scholar
  6. Eddy, J. A.: 1977a, in O. R. White (ed.), The Solar Output and Its Variation, Colorado Associated University Press, Boulder, Colorado, p. 51.Google Scholar
  7. Eddy, J. A.: 1977b, Clim. Change 1, 173.Google Scholar
  8. Eddy, J. A.: 1980, in R. O. Pepin, J. A. Eddy, and R. B. Merrill (eds.), The Ancient Sun, Pergamon Press, New York, p. 119.Google Scholar
  9. Eddy, J. A.: 1983, Solar Phys. 89, 195.Google Scholar
  10. Everitt, B. S.: 1977, The Analysis of Contingency Tables, John Wiley & Sons, Inc., New York.Google Scholar
  11. Fairbridge, R. W. and Shirley, J. H.: 1987, Solar Phys. 110, 191.Google Scholar
  12. Feynman, J. and Fougere, P. F.: 1984, J. Geophys. Res. 89(A5), 3023.Google Scholar
  13. Gérard, J.-C. and François, L. M.: 1987, Nature 326, 577.Google Scholar
  14. Gleissberg, W.: 1958, J. Brit. Astron. Assoc. 68, 148.Google Scholar
  15. Gleissberg, W.: 1965, J. Brit. Astron. Assoc. 75, 227.Google Scholar
  16. Herman, J. R. and Goldberg, R. A.: 1978, Sun, Weather, and Climate, NASA SP-426, Washington, D.C.Google Scholar
  17. Kane, R. P.: 1987, Solar Phys. 108, 415.Google Scholar
  18. Kopecký, M.: 1967, in Z. Kopal (ed.), Advances in Astronomy and Astrophysics, Vol. 5, Academic Press, New York, p. 189.Google Scholar
  19. Langley, R.: 1971, Practical Statistics Simply Explained, revised ed., Dover Publ., Inc., New York.Google Scholar
  20. McNish, A. G. and Lincoln, J. V.: 1949, Trans. Am. Geophys. Union 30, 673.Google Scholar
  21. Schatten, K. H. and Sofia, S.: 1987, Geophys. Res. Letters 14, 632.Google Scholar
  22. Schove, D. J. (ed.): 1983, Sunspot Cycles, Hutchinson Ross Publ. Co., Stroudsburg, Pennsylvania.Google Scholar
  23. Siscoe, G. L.: 1980, Rev. Geophys. Space Phys. 18, 647.Google Scholar
  24. Sonett, C. P. and Williams, G. E.: 1985, J. Geophys. Res. 90(A12), 12019.Google Scholar
  25. Sonett, C. P. and Williams, G. E.: 1987, Solar Phys. 110, 397.Google Scholar
  26. Stuiver, M. and Grootes, P. M.: 1980, in R. O. Pepin, J. A. Eddy, and R. B. Merrill, The Ancient Sun, Pergamon Press, New York, p. 165.Google Scholar
  27. Stuiver, M. and Quay, P. D.: 1980, Science 207, 11.Google Scholar
  28. Swed, F. S. and Eisenhart, C.: 1943, Am. Math. Stat. 14, 66.Google Scholar
  29. Williams, G. E.: 1985, Australian J. Phys. 38, 1027.Google Scholar
  30. Williams, G. E. and Sonett, C. P.: 1985, Nature 318, 523.Google Scholar
  31. Wilson, R. M.: 1984a, A Comparative Look at Sunspot Cycles, NASA TP-2325, Marshall Space Flight Center, Alabama.Google Scholar
  32. Wilson, R. M.: 1984b, On Long-Term Periodicities in the Sunspot Record, NASA TM-86458, Marshall Space Flight Center, Alabama.Google Scholar
  33. Wilson, R. M.: 1987, J. Geophys. Res. 92(A9), 10101.Google Scholar
  34. Wilson, R. M.: 1988, Geophys. Res. Letters 15, 125.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Robert M. Wilson
    • 1
  1. 1.Space Science Laboratory, NASA Marshall Space Flight CenterHuntsvilleU.S.A.

Personalised recommendations