Advertisement

Solar Physics

, Volume 111, Issue 2, pp 397–418 | Cite as

Characteristics of shock-associated fast-drift kilometric radio bursts

  • R. J. MacDowall
  • R. G. Stone
  • M. R. Kundu
Article

Abstract

The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper, we establish unambiguous SA event criteria for the purpose of statistically comparing SA events with conventional kilometric type III bursts. We apply these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval and find that more than 70% of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event in our sample is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity. Compared with conventional kilometric type III bursts, the characteristics of these SA events are longer duration, higher maximum intensity, and a larger number of components. Differences in these characteristics for the two classes of events are not sufficient to distinguish all SA events from conventional type III bursts. The consistent lack of reported metric type III activity during the latter part of the candidate events suggests that some of the electrons are accelerated high in the corona, at or near the altitude of the shock.

Keywords

Cane Maximum Intensity Event Criterion High Maximum Radio Signature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bougeret, J. L., Fainberg, J., and Stone, R. G.: 1984, Astron. Astrophys. 136, 255.Google Scholar
  2. Cane, H. V.: 1985, J. Geophys. Res. 90, 191.Google Scholar
  3. Cane, H. V. and Stone, R. G.: 1984, Astrophys. J. 282, 339.Google Scholar
  4. Cane, H. V., McGuire, R. E., and von Rosenvinge, T. T.: 1986, Astrophys. J. 301, 448.Google Scholar
  5. Cane, H. V., Stone, R. G., Fainberg, J., Stewart, R. T., Steinberg, J. L., and Hoang, S.: 1981, Geophys. Res. Letters 8, 1285.Google Scholar
  6. Evans, L. G., Fainberg, J., and Stone, R. G.: 1973, Solar Phys. 31, 501.Google Scholar
  7. Kahler, S. W., Cliver, E. W., and Cane, H. V.: 1986, Adv. Space Res. 6, No. 6, 319.Google Scholar
  8. Knoll, R., Epstein, F., Huntzinger, G., Steinberg, J. L., Fainberg, J., Grena, F., Mosier S. R., and Stone, R. G.: 1978, IEEE Trans. Geosc. Electronics GE-16, 199.Google Scholar
  9. Kundu, M. R.: 1965, Solar Radio Astronomy, Interscience Publ., New York.Google Scholar
  10. Kundu, M. R. and Stone, R. G.: 1984, Adv. Space Res. 4, No. 7, 261.Google Scholar
  11. Kundu, M. R., MacDowall, R. J., Stone, R. G., and Loiacono, R.: 1987, Solar Physics (in press).Google Scholar
  12. Robinson, R. D., Tuxford, J. M., Sheridan, K. V., and Stewart, R. T.: 1983, Proc. Astron. Soc. Australia 5, 84.Google Scholar
  13. Solar-Geophysical Data: No. 411–439, Part I: 1978–1981, U.S. Department of Commerce, Boulder, CO.Google Scholar
  14. Wild, J. P., Smerd, S. F., and Weiss, A.: 1963, Ann. Rev. Astron. Astrophys. 1, 291.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • R. J. MacDowall
    • 1
  • R. G. Stone
    • 2
  • M. R. Kundu
    • 3
  1. 1.Astronomy Program, University of MarylandCollege ParkUSA
  2. 2.Laboratory for Extraterrestrial Physics, NASA/Goddard Space Flight CenterGreenbeltUSA
  3. 3.Astronomy Program, University of MarylandCollege ParkUSA

Personalised recommendations