Geometriae Dedicata

, Volume 13, Issue 3, pp 231–255 | Cite as

Generalized Hopf manifolds

  • Izu Vaisman


Let (M,J,g) be a Hermitian manifold with complex structure J, metric g, and Kähler form Ω. Then g is locally conformal Kähler iff dΩ=ω ∧ Ω for some closed and non-exact 1-form ω. Moreover, if ω is a parallel form, M is called a generalized Hopf manifold. The main results of this paper are: (a) the description of the geometric structure of the compact locally conformal Kähler-flat manifolds; (b) the description of the geometric structure of the compact generalized Hopf manifolds on which a certain canonically defined foliation is regular; (c) a description of the harmonic forms and Betti numbers of a general compact generalized Hopf manifold; (d) a method for studying analytic vector fields on generalized Hopf manifolds; (e) conditions for submanifolds of generalized Hopf manifolds to belong to the same class.

AMS (MOS) subject classification scheme (1980)

Principal 53 C 55 


  1. 1.
    Abe, K.: ‘On a Generalization of the Hopf Fibration, I, II’. Tôhoku Math. J. 29 (1977). 335–374; 30 (1978), 177–210.Google Scholar
  2. 2.
    Baum, P. and Bott, R.: ‘Singularities of Holomorphic Foliations’. J. Diff. Geom. 7 (1972), 279–342.Google Scholar
  3. 3.
    Blair, D. E.: ‘Geometry of Manifolds with Structural Group U(nO(s)’. J. Diff. Geom. 4 (1970), 155–167.Google Scholar
  4. 4.
    Blair, D. E., Ludden, G. D. and Yano, K.: ‘Differential Geometric Structures on Principal Toroidal Bundles’. Trans. Amer. Math. Soc. 181 (1973), 175–184.Google Scholar
  5. 5.
    Boothby, W. M. and Wang, H. C.: ‘On Contact Manifolds’. Ann. Math. 68 (1958), 721–734.Google Scholar
  6. 6.
    Duchamp, T. and Kalka, M.: ‘Holomorphic Foliations and the Kobayashi Metric’. Proc. Amer. Math. Soc. 67 (1977), 117–122.Google Scholar
  7. 7.
    Gauduchon, P.: ‘Le théorème de l'excentricité nulle’. C. R. Acad. Sci. Paris, A285 (1977), 387–390.Google Scholar
  8. 8.
    Girbau, J. and Nicolau, M.: ‘Pseudo-Differential Operators on V-Manifolds and Foliations, I, II’. Coll. Math. 30 (1979), 247–265; 31 (1980), 63–95.Google Scholar
  9. 9.
    Goldberg, S. I.: Curvature and Homology. Academic Press, New York, 1962.Google Scholar
  10. 10.
    Hopf, E.: ‘Elementare Bemerkungen über die Lösung partielle Differentialgleichungen zweiter Ordnung vom elliptischen Typus’. Sitzber. Preuss. Akad. Wiss., Physik. Math. Kl. 19 (1927), 147–152.Google Scholar
  11. 11.
    Kashiwada, T. and Sato, S.: ‘On Harmonic Forms in Compact Locally Conformal Kähler Manifolds with the Parallel Lee Form’. (preprint).Google Scholar
  12. 12.
    Kato, M.: ‘Topology of Hopf Surfaces’. J. Math. Soc. Japan 27 (1975), 222–238.Google Scholar
  13. 13.
    Kato, M.: ‘Compact Differentiable 4-Folds with Quaternionic Structures’. Math. Ann. 248 (1980), 76–96.Google Scholar
  14. 14.
    Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, I, II. Interscience, New York, 1963, 1969.Google Scholar
  15. 15.
    Kodaira, K.: ‘On the Structure of Compact Complex Analytic Surfaces I, II’. Amer. J. Math. 86 (1964), 751–798; 88 (1966), 682–722.Google Scholar
  16. 16.
    Lascoux, A. and Berger, M.: ‘Variétés Kählériennes compactes’, Lecture Notes in Mathematics. 154, Springer-Verlag, Berlin, 1970.Google Scholar
  17. 17.
    Lichnerowicz, A.: Global Theory of Connections and Holonomy Groups. Noordhoff International Publ., Leyden, 1976.Google Scholar
  18. 18.
    Matsushima, Y.: ‘Holomorphic Vector Fields on Compact Kähler Manifolds’, C. B. M. S. Reg. Conf. Series in Math. 7. Amer. Math. Soc., Providence, Rhode Island, 1971.Google Scholar
  19. 19.
    Ogawa, Y.: ‘On C-Harmonic Forms in a Compact Sasakian Space’. Tôhoku Math. J. 19 (1967), 267–296.Google Scholar
  20. 20.
    Palais, R. S.: ‘A Global Formulation of the Lie Theory of Transformation Groups’. Memoirs Amer. Math. Soc. 22, American Math. Soc., Providence, Rhode Island, 1957.Google Scholar
  21. 21.
    Reinhart, B. L.: ‘Foliated Manifolds with Bundle-like Metrics’. Ann. Math. 69 (1959), 119–132.Google Scholar
  22. 22.
    Reinhart, B. L.: ‘Harmonic Integrals on Foliated Manifolds’. Amer. J. Math. 81 (1959), 529–536.Google Scholar
  23. 23.
    Satake, I.: ‘On a Generalization of the Notion of Manifold’. Proc. Nat. Acad. Sci. USA 42 (1956), 359–363.Google Scholar
  24. 24.
    Tachibana, S.: ‘On a Decomposition of C-Harmonic Forms in a Compact Sasakian Space’. Tôhoku Math. J. 19 (1967), 198–212.Google Scholar
  25. 25.
    Tricerri, F.: ‘Some Examples of Locally Conformal Kähler Manifolds’ (preprint).Google Scholar
  26. 26.
    Vaisman, I.: ‘Variétés Riemanniennes feuilletées’. Czech. Math. J. 21 (1971), 46–75.Google Scholar
  27. 27.
    Vaisman, I.: ‘On Locally Conformal Almost Kähler Manifolds’. Israel J. Math. 24 (1976), 338–351.Google Scholar
  28. 28.
    Vaisman, I.: ‘On some Spaces which are Covered by a Product Space’. Ann. de l'Inst. Fourier, Grenoble 27 (1977), 107–134.Google Scholar
  29. 29.
    Vaisman, I.: ‘Locally Conformal Kähler Manifolds with Parallel Lee Form’. Rend. Mat. Roma 12 (1979), 263–284.Google Scholar
  30. 30.
    Vaisman, I.: ‘Remarkable Operators and Commutation Formulas on Locally Conformal Kähler Manifolds’. Comp. Math. 40 (1980), 287–300.Google Scholar
  31. 31.
    Vaisman, I.: ‘Some Curvature Properties of Locally Conformal Kähler Manifolds’. Trans. Amer. Math. Soc. 259 (1980), 439–447.Google Scholar
  32. 32.
    Vaisman, I.: ‘On Locally and Globally Conformal Kähler Manifolds’. Trans. Amer. Math. Soc. 262 (1980), 533–542.Google Scholar

Copyright information

© D. Reidel Publishing Company 1982

Authors and Affiliations

  • Izu Vaisman
    • 1
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael

Personalised recommendations