Geometriae Dedicata

, Volume 5, Issue 1, pp 117–127

Automorphic graphs and the Krein condition

  • Norman Biggs
Article

Abstract

An automorphic graph is a distance-transitive graph, not a complete graph or a line graph, whose automorphism group acts primitively on the vertices. This paper shows that, for small values of the valency and diameter, such graphs are rare. The basic tool is the intersection array, for which there are several very restrictive feasibility conditions. In particular, a slight generalisation of the Krein condition of Scott and Higman is given, with a simplified proof.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Biggs, N.L., Finite Groups of Automorphisms (London Math. Society Lecture Notes, No. 6), Cambridge Univ. Press, London, 1971.Google Scholar
  2. 2.
    Biggs, N.L., Algebraic Graph Theory (Cambridge Math. Tracts, No. 67), Cambridge Univ. Press, London, 1974.Google Scholar
  3. 3.
    Biggs, N.L., ‘The Symmetry of Line Graphs’, Utilitas Mathematica 5 (1974), 113–121.Google Scholar
  4. 4.
    Biggs, N.L. and Smith, D.H., ‘On Trivalent Graphs’, Bull. London Math. Soc. 3 (1971), 155–158.Google Scholar
  5. 5.
    Conway, J.H., ‘Three Lectures on Exceptional Groups’, in M.B. Powell and G. Higman (eds.), Finite Simple Groups, Academic Press, New York, 1971.Google Scholar
  6. 6.
    Gardiner, A.D., ‘Antipodal Covering Graphs’, J. Combinatorial Theory (B) 16 (1974).Google Scholar
  7. 7.
    Hammond, P. and Smith, D.H., ‘Perfect Codes in the Graphs O k’, J. Combinatorial Theory (B) 19 (1975) 239–255.Google Scholar
  8. 8.
    Hestenes, M.D. and Higman, D.G., ‘Rank 3 Groups and Strongly Regular Graphs’, in G. Birkhoff (ed.), Computers in Algebra and Number Theory, Am. Math. Soc., Providence R.I., 1971.Google Scholar
  9. 9.
    Higman, D.G., ‘Finite Permutation Groups of Rank 3’, Math. Z. 86 (1964), 145–156.Google Scholar
  10. 10.
    Higman, D.G., ‘Invariant Relations, Coherent Configurations and Generalized Polygons’, Math. Centre Tracts 57 (1974), 27–43.Google Scholar
  11. 11.
    Meredith, G.H.J. and Lloyd, E.K., ‘The Footballers of Croam’, J. Combinatorial Theory (B) 15 (1973), 161–166.Google Scholar
  12. 12.
    Scott, L.L., ‘A Condition on Higman's Parameters’, Notices Am. Math. Soc. 20 (1973), A-97.Google Scholar
  13. 13.
    Smith, D.H., ‘Primitive and Imprimitive Graphs’, Quart. J. Math. Oxford (2) 22 (1971), 551–557.Google Scholar
  14. 14.
    Smith, D.H., ‘On tetravalent graphs’, J. London Math. Soc. (2) 6 (1973), 659–662.Google Scholar
  15. 15.
    Smith, D.H., ‘Distance-Transitive Graphs of Valency Four’, J. London Math. Soc. (2) 8 (1974), 377–384.Google Scholar
  16. 16.
    Smith, D.H., ‘On Bipartite Tetravalent Graphs’, Discrete Math. 10 (1974) 167–172.Google Scholar

Copyright information

© D. Reidel Publishing Company 1976

Authors and Affiliations

  • Norman Biggs
    • 1
  1. 1.Royal Holloway CollegeUniversity of LondonEghamEngland

Personalised recommendations