Advertisement

Geometriae Dedicata

, Volume 15, Issue 2, pp 171–194 | Cite as

Caustics by reflexion in the extended plane

  • J. W. Bruce
  • P. J. Giblin
  • C. G. Gibson
Article

Keywords

Extended Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berry, M. V.: ‘Waves and Thom's Theorem’. Adv. Phys. 25 (1976), 1–26.Google Scholar
  2. 2.
    Bruce, J. W.: ‘On Singularities, Envelopes and Elementary Differential Geometry’. Math. Proc. Camb. Phil. Soc. 89 (1981), 43–48.Google Scholar
  3. 3.
    Bruce, J. W., Giblin, P. J., and Gibson, C. G.: ‘On Caustics of Plane Curves’. Amer. Math. Monthly 88 (1981), 651–667.Google Scholar
  4. 4.
    Bruce, J. W., Giblin, P. J., and Gibson, C. G.: ‘On Caustics by Reflexion’. Topology 21 (1982), 179–199.Google Scholar
  5. 5.
    Bruce, J. W., Giblin, P. J., and Gibson C. G.: ‘Source Genericity of Caustics by Reflexion in the Plane’. Quart. J. Math. (Oxford) 33 (1982), 169–190.Google Scholar
  6. 6.
    Bruce, J. W., Giblin, P. J., and Gibson, C. G.: ‘Source Genericity of Caustics by Reflexion in ℝ3. Phil. Trans. Roy. Soc. London 38 (1982), 83–116.Google Scholar
  7. 7.
    Gibson, C. G.: ‘Singular Points of Smooth Mappings’. Research Notes in Mathematics, Vol. 25, Pitman, 1979.Google Scholar
  8. 8.
    Looijenga, E. J. N.: ‘Structural Stability of Families of C Functions’. Thesis, University of Amsterdam, 1974.Google Scholar
  9. 9.
    Wall, C. T. C.: ‘Geometric Properties of Generic Differentiable Manifolds’. In Geometry and Topology III, Springer Lecture Notes in Mathematics, vol. 597, Berlin, 1976.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • J. W. Bruce
    • 1
  • P. J. Giblin
    • 2
  • C. G. Gibson
    • 2
  1. 1.School of MathematicsUniversity of Newcastle-upon-TyneNewcastle-upon-TyneEngland
  2. 2.Department of Pure MathematicsUniversity of LiverpoolLiverpoolEngland

Personalised recommendations