Geometriae Dedicata

, Volume 15, Issue 2, pp 137–153 | Cite as

The classification of the translation planes of order 16, I

  • U. Dempwolff
  • A. Reifart


The translation planes of order 16 are completely classified. The exceptional isomorphism A8GL(4, 2) gives a crucial computational approach to this problem


Computational Approach Translation Plane Exceptional Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dempwolff, U. and Reifart, A., ‘Translation Planes of Order 16 Admitting a Baer 4-Group’, J. Comb. Theory (A) 32 (1982), 119–124.Google Scholar
  2. 2.
    Dembowski, P., Finite Geometries, Springer-Verlag, Berlin, Heidelberg, New York, 1968.Google Scholar
  3. 3.
    Hall, M., ‘Projective Planes’, Trans. Amer. Math. Soc. 54 (1943), 229–277.Google Scholar
  4. 4.
    Hall, M., Swift, J. D. and Walker, J. R., ‘Uniqueness of Projective Planes of Order Eight’, Tables Aides Comput. 10 (1956), 186–194.Google Scholar
  5. 5.
    Huppert, B., Endliche Gruppen I, Springer, Berlin, Heidelberg, New York, 1967.Google Scholar
  6. 6.
    Johnson, N. L., ‘A Note on the Derived Semifield Plane of Order 16’, Aequat. Math. 18 (1978), 103–111.Google Scholar
  7. 7.
    Johnson, N. L., and Ostrom, T. G., ‘Tangentially Transitive Planes of Order 16’, J. Geometry 10 (1977), 146–163.Google Scholar
  8. 8.
    Johnson, N. L. and Ostrom, T. G., ‘The Translation Planes of Order 16 that Admit PSL (2, 7)’, J. Comb. Theory (A) 26 (1979), 127–134.Google Scholar
  9. 9.
    Knuth, D., ‘Finite Semifields and Projective Planes’, J. Algebra 2 (1965), 182–217.Google Scholar
  10. 10.
    Lorimer, P., ‘A Projective Plane of Order 16’, J. Comb. Theory (A) 16 (1974), 334–347.Google Scholar
  11. 11.
    Lüneburg, H., Translation Planes, Springer Berlin, Heidelberg, New York, 1981.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • U. Dempwolff
    • 1
  • A. Reifart
    • 1
  1. 1.Mathematisches InstitutUniversität KaiserslauternKaiserslauternF.R. Germany

Personalised recommendations