Geometriae Dedicata

, Volume 33, Issue 1, pp 51–58 | Cite as

On Quermassintegrals of mixed projection bodies

  • Erwin Lutwak
Article

Abstract

One of the major outstanding questions in Geometric Convexity is Petty's conjectured inequality between the volume of a convex body and that of its projection body. It is shown that if Petty's conjectured inequality holds, then it is the first of a family of such inequalities (involving mixed projection bodies). All of the members of this family are strengthened versions of the classical inequalities between pairs of Quermassintegrals of a convex body. The last member of this family (of conjectured inequalities) is established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksandrov, A. D., ‘On the theory of mixed volumes of convex bodies. II. New inequalities between mixed volumes and their applications’, Mat. Sbornik N.S. 2 (1937), 1205–1238 (Russian).Google Scholar
  2. 2.
    Bonnesen, T. and Fenchel, W., Theorie der konvexen Körper, Springer, Berlin, 1934.Google Scholar
  3. 3.
    Chakerian, G. D. and Groemer, H., ‘Convex bodies of constant width’, in Convexity and its Applications (P. M. Gruber and J. M. Wills, eds), Birkhäuser, Basel, 1983, pp. 49–96.Google Scholar
  4. 4.
    Leichtweiss, K., Konvexe Mengen, Springer, Berlin, 1980.Google Scholar
  5. 5.
    Lutwak, E., ‘Mixed projection inequalities’, Trans. Amer. Math. Soc. 287 (1985), 91–106.Google Scholar
  6. 6.
    Lutwak, E., ‘Volume of mixed bodies’, Trans. Amer. Math. Soc. 294 (1986), 487–500.Google Scholar
  7. 7.
    Lutwak, E., ‘On some affine isoperimetric inequalities’, J. Diff. Geom. 23 (1986), 1–13.Google Scholar
  8. 8.
    Petty, C. M., ‘Projection bodies’, Proc. Coll. Convexity (Copenhagen 1965), Københavns Univ. Mat. Inst., 1967, pp. 234–241.Google Scholar
  9. 9.
    Petty, C. M., ‘Isoperimetric problems’, Proc. Conf. on Convexity and Combinatorial Geometry, Univ. of Oklahoma, June 1971, 1972, pp. 26–41.Google Scholar
  10. 10.
    Schneider, R., ‘Rekonstruktion eines konvexen Körpers aus seinen Projktionen’, Math. Nachr. 79 (1977), 325–329.Google Scholar
  11. 11.
    Schneider, R., ‘Boundary structure and curvature of convex bodies’, in Contribution to Geometry (J. Tölke and J. M. Wills, eds), Birkhäuser, Basel, 1979, pp. 13–59.Google Scholar
  12. 12.
    Schneider, R., ‘Random hyperplanes meeting a convex body’, Z. Wahr. verw. Gebiete 61 (1982), 379–387.Google Scholar
  13. 13.
    Schneider, R., ‘Geometric inequalities for Poisson processes of convex bodies and cylinders’, Results in Math. 11 (1987), 165–185.Google Scholar
  14. 14.
    Schneider, R. and Weil, W., ‘Zonoids and related topics’, in Convexity and its Applications (P. M. Gruber and J. M. Wills, eds), Birkhäuser, Basel, 1983, pp. 296–317.Google Scholar
  15. 15.
    Weil, W., ‘Über die Projektionenkörper konvexer Polytope’, Arch. Math. 22 (1971), 664–672.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Erwin Lutwak
    • 1
  1. 1.Department of MathematicsPolytechnic UniversityBrooklynUSA

Personalised recommendations