Advertisement

Geometriae Dedicata

, Volume 2, Issue 4, pp 397–424 | Cite as

The orchard problem

  • Stefan A. Burr
  • Branko Grünbaum
  • N. J. A. Sloane
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Abraham, R. M., Diversions and Pastimes, Constable and Co., London 1933. (Revised edition, Dover, New York 1964.)Google Scholar
  2. Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, National Bureau of Standards, Washington D.C., 1964. Republished by Dover, New York 1965.Google Scholar
  3. Alauda (pseud.), ‘Question 1664’, Interméd. Math. 8 (1899), 245; reprinted ibid. 18 (1911), 196.Google Scholar
  4. Bachmann, P., Niedere Zahlentheorie, Part 2: ‘Additive Zahlentheorie’, Teubner, Leipzig 1910.Google Scholar
  5. Ball, W. W. R., Mathematical Recreations and Essays, 11th edition, revised by H. S. M. Coxeter, Macmillan, New York 1960.Google Scholar
  6. Berger, E. R., ‘Some Additional Upper Bounds for Fixed Weight Codes of Specified Minimum Distance’, IEEE Trans. Info. Theory IT-13 (1967), 307–308.Google Scholar
  7. Brakke, K. A., ‘Some New Values of Sylvester's Function for n Noncollinear Points’, J. Undergrad. Math. Google Scholar
  8. Brooke, M., ‘Dots and Lines’, Recreational Mathematics Magazine 6 (1961), 51–55; ibid. 7 (1962), 55–56.Google Scholar
  9. Brunel, G., ‘Communication’, Mem. Soc. Sci. phys. et natur. Bordeaux (3) 5 (1890), pp. XCIII-XCIV.Google Scholar
  10. Brunel, G., ‘Sur les duades formées avec 2p éléments’, Proc. Verb. Séance Soc. Sci. phys. Nat. Bordeaux, (1897–98), 104–105.Google Scholar
  11. Cayley, A., ‘Untitled Note’, Proc. London Math. Soc. 2 (1867), 25–26. (Collected Mathematical Papers, Cambridge University Press, 1889–1897, Vol. 6, p. 20.)Google Scholar
  12. Clifford, W. K., ‘On Triangular Symmetry’, Math. Questions from the Educational Times 4 (1865), 88–89. (Mathematical Papers, Macmillan, London 1882, pp. 412–414.)Google Scholar
  13. Coolidge, J. L., A Treatise on Algebraic Plane Curves, Oxford University Press, 1931. Republished by Dover, New York 1959.Google Scholar
  14. Coxeter, H. S. M., ‘Self-Dual Configurations and Regular Graphs’, Bull. Amer. Math. Soc. 56 (1950), 413–455.Google Scholar
  15. Dickson, L. E., History of the Theory of Numbers, Vol. 2, Carnegie Institution of Washington, Publication 256, Washington, D.C., 1920. Republished by Chelsea, New York 1952.Google Scholar
  16. Dudeney, H. E., ‘Problem 213’, in Amusements in Mathematics, Nelson, London 1917, pp. 58, 191–193.Google Scholar
  17. Freiman, C. C., ‘Upper Bounds for Fixed Weight Codes of Specified Minimum Distance’, IEEE Trans. Info. Theory IT-10 (1964), 246–248.Google Scholar
  18. Fulton, W., Algebraic Curves, Benjamin, New York 1969.Google Scholar
  19. Grünbaum, B., ‘Arrangements of Hyperplanes’, in Proc. Second Louisiana Conference on Combinatorics, Graph Theory and Computing (ed. by R. C. Mullin et al.), Louisiana State Univ., Baton Rouge 1971, pp. 41–106.Google Scholar
  20. Grünbaum, B., Arrangements and Spreads, Amer. Math. Soc., Providence, R.I., 1972.Google Scholar
  21. Hall, M., Jr., Combinatorial Theory, Blaisdell, Waltham, Mass. 1967.Google Scholar
  22. Hilbert, D. and Cohn-Vossen, S., Anschauliche Geometrie, Springer, Berlin 1932. Reprinted by Dover, New York 1944. English translation: Geometry and the Imagination, Chelsea, New York 1952.Google Scholar
  23. Hilton, H., Plane Algebraic Curves, Oxford University Press 1920.Google Scholar
  24. Hurwitz, A., ‘Ueber die Schrötersche Construction der ebenen Curven dritter Ordnung’, J. reine angew. Math. 107 (1890), 141–147.Google Scholar
  25. Jackson, J., Rational Amusement for Winter Evenings, Longman, Hurst, Rees, Orme and Brown, London 1821.Google Scholar
  26. Jahnke, E. and Emde, F., Tables of Functions with Formulae and Curves, 4th ed. Dover, New York 1945.Google Scholar
  27. Johnson, S. M., ‘A New Upper Bound for Error-Correcting Codes’, IEEE Trans. Info. Theory IT-8 (1962), 203–207.Google Scholar
  28. Johnson, S. M., ‘Improved Asymptotic Bounds for Error-Correcting Codes’, IEEE Trans. Info. Theory IT-9 (1963), 198–205.Google Scholar
  29. Johnson, S. M., ‘On Upper Bounds for Unrestricted Binary Error-Correcting Codes’, IEEE Trans. Info. Theory IT-17 (1971), 466–478.Google Scholar
  30. Johnson, S. M., ‘Upper Bounds for Constant Weight Error Correcting Codes’, Discrete Math. 3 (1972), 109–124.Google Scholar
  31. Kantor, S., ‘Die Configurationen (3,3)10’, S.-Ber. Math.-Nat. Cl. Akad. Wiss. Wien 84, Part 2 (1881), pp. 1291–1314 (1882).Google Scholar
  32. Kelly, L. M. and Moser, W. O. J., ‘On the Number of Ordinary Lines Determined by n Points’, Canad. J. Math. 10 (1958), 210–219.Google Scholar
  33. Kelly, L. M. and Rottenberg, R. ‘Simple Points in Pseudoline Arrangements’, Pacific J. Math. 40 (1972), 617–622.Google Scholar
  34. Kirkman, T. P., ‘On a Problem in Combinations’, The Cambridge and Dublin Math. J. 2 (1847), 191–204.Google Scholar
  35. Kirkman, T. P., ‘Note on an Unanswered Prize Question’, The Cambridge and Dublin Math. J. 5 (1850), 255–262.Google Scholar
  36. Levenštein, V. I., ‘On upper Bounds for Fixed-Weight Codes’ (Russian), Probl. Peredačy Inform. 7 (1971), 3–12.Google Scholar
  37. Levi, F., ‘Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade’, Ber. Verh. sächs. Ges. Wiss. Leipzig. Math. Phys. Kl. 78 (1926), 256–267.Google Scholar
  38. Levi, F., Geometrische Konfigurationen, Hirzel, Leipzig 1929.Google Scholar
  39. Loyd, S., Cyclopedia of Puzzles, Lamb, New York 1914.Google Scholar
  40. Macmillan, R. H., ‘An Old Problem’, Math. Gazette 30 (1946), 109.Google Scholar
  41. Martinetti, V., ‘Sulle configurazioni piane μ3’, Annali di Matematica 15 (1887), 1–26.Google Scholar
  42. Niven, S., ‘On the Number of k-tuples in Maximal Systems m(k, l, n), in Combinatorial Structures and their Applications (ed. by R. Guy et al.), Gordon and Breach, New York 1970, pp. 303–306.Google Scholar
  43. Oppenheimer, H., ‘Ueber die Ausartungen der Schröterschen Konstruktion der ebenen Kurven dritter Ordnung’, Monatshefte Math. u. Physik 16 (1905), 193–203.Google Scholar
  44. Reiss, M., ‘Ueber eine Steinersche combinatorische Aufgabe welche in 45sten Bande dieses Journals, Seite 181, gestellt worden ist’, J. reine angew. Math. 56 (1859), 326–344.Google Scholar
  45. Schönheim, J., ‘On Maximal Systems of k-Tuples’, Stud. Sci. Math. Hungar. 1 (1966), 363–368.Google Scholar
  46. Schröter, H., ‘Ueber eine besondere Curve 3ter Ordnung und eine einfache Erzeugungsart der allgemeinen Curve 3ter Ordnung’, Math. Ann. 5 (1872), 50–82.Google Scholar
  47. Schröter, H., ‘Ueber die Bildungsweise und geometrische Konstruction der Konfigurationen 103’, Nachr. Ges. Wiss. Götingen, No. 8 (1889), pp 193–236.Google Scholar
  48. Scott, C. A., ‘On Plane Cubics’, Philos. Trans. Roy. Soc. London A185 (1894), 247–277.Google Scholar
  49. Seidenberg, A., Elements of the Theory of Algebraic Curves, Addison-Wesley, Reading, Mass. 1968.Google Scholar
  50. Steiner, J., ‘Combinatorische Aufgabe’, J. reine angew. Math. 45 (1853), 181–182.Google Scholar
  51. Steinitz, E., ‘Konfigurationen der projektiven Geometrie’, Encyklopädie der Math. Wiss. 3 (Geometrie), Part III AB 5a (1907–1910), 481–516.Google Scholar
  52. Sterneck, R. D. v., ‘Ein Analogon zur additiven Zahlentheorie’, S.-Ber. Math. Nat. Kl. Akad. Wiss. Wien 113, Part 2a (1904), 326–340.Google Scholar
  53. Sylvester, J. J., ‘Problem 2473’, Math. Questions from the Educational Times 8 (1867), 106–107.Google Scholar
  54. Sylvester, J. J., ‘Problem 2572’, Math. Questions from the Educational Times 45 (1886,) 127–128; 59 (1893), 133–134.Google Scholar
  55. Sylvester, J. J., ‘Problem 3019’, Math. Questions from the Educational Times 45 (1886), 134.Google Scholar
  56. Sylvester, J. J., ‘Problem 11851’, Math. Questions from the Educational Times 59 (1893), 98–99.Google Scholar
  57. White, H. S., Plane Curves of the Third Order, Harvard Univ. Press 1925.Google Scholar
  58. Whittaker, E. T., and Watson, G. N., A Course of Modern Analysis, 4th ed., Cambridge University Press, 1927.Google Scholar
  59. Woolhouse, W. S. B., ‘Problem XXXIX’, The Mathematician, 1 (1855), 272. ‘Solution’, ibid. 2 (1856), 278–280.Google Scholar

Copyright information

© D. Reidel Publishing Company 1974

Authors and Affiliations

  • Stefan A. Burr
    • 1
  • Branko Grünbaum
    • 2
  • N. J. A. Sloane
    • 3
  1. 1.Bell LabsMadisonU.S.A.
  2. 2.University of WashingtonSeattleU.S.A.
  3. 3.Bell LabsMurray HillU.S.A.

Personalised recommendations