Advertisement

Geometriae Dedicata

, Volume 9, Issue 2, pp 239–253 | Cite as

Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2

Part I
  • Ascher Wagner
Article

Keywords

Reflection Group Arbitrary Field Primitive Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Coxeter, H.S.M., ‘Discrete Groups Generated by Reflections’, Ann. Math. 35 (1934), 588–621.Google Scholar
  2. 2.
    Dickson, L. E., Linear Groups, Reprint, Dover, New York (1958).Google Scholar
  3. 3.
    Mitchell, H.H., ‘Determination of the Ordinary and Modular Ternary Linear Groups’, Trans. Amer. Math. Soc. 12 (1911), 207–242.Google Scholar
  4. 4.
    Mitchell, H.H., ‘Determination of all Primitive Collineation Groups in More than Four Variables which Contain Homologies’, Amer. J. Math. 36 (1914), 1–12.Google Scholar
  5. 5.
    Piper, F.C., ‘On Elations of Finite Projective Spaces’, Geom. Dedicata 2 (1973), 13–27.Google Scholar
  6. 6.
    Serežkin, V.N., ‘Reflection Groups over Finite Fields of Characteristic p>5’, Soviet Math. Dokl. 17 (1976), 478–480.Google Scholar
  7. 7.
    Wagner, A., ‘Groups Generated by Elations’, Abh. Math. Sem. Univ. Hamb. 41 (1974), 190–205.Google Scholar
  8. 8.
    Wagner, A., ‘Collineation Groups Generated by Homologies of Order Greater than 2’, Geom. Dedicata 7 (1978) 387–398.Google Scholar
  9. 9.
    Wagner, A., ‘The Minimal Number of Involutions Generating some Finite Three-dimensional Groups’, Boll. Un. Mat. Ital. (5) 15-A (1978), 431–439.Google Scholar
  10. 10.
    Witt, E., ‘Spiegelungsgruppen und Aufzählung halb-einfacher LIEscher Ringe’, Abh. Math. Sem. Univ. Hamb. 14 (1941), 289–322.Google Scholar

Copyright information

© D. Reidel Publishing Co 1980

Authors and Affiliations

  • Ascher Wagner
    • 1
  1. 1.Dept. of Pure MathematicsUniversity of BirminghamBirminghamEngland

Personalised recommendations