Geometriae Dedicata

, Volume 35, Issue 1–3, pp 283–307 | Cite as

Toroidal Lie algebras and vertex representations

  • Robert V. Moody
  • Senapathi Eswara Rao
  • Takeo Yokonuma
Article

Abstract

The paper describes the theory of the toroidal Lie algebra, i.e. the Lie algebra of polynomial maps of a complex torus ℂ××ℂ× into a finite-dimensional simple Lie algebra g. We describe the universal central extension t of this algebra and give an abstract presentation for it in terms of generators and relations involving the extended Cartan matrix of g. Using this presentation and vertex operators we obtain a large class of integrable indecomposable representations of t in the case that g is of type A, D, or E. The submodule structure of these indecomposable modules is described in terms of the ideal structure of a suitable commutative associative algebra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borcherds, R., ‘Vertex algebras, Kac-Moody algebras and the Monster’, Proc. Natl. Acad. Sci. USA 83 (1986), 3068–3071.Google Scholar
  2. 2.
    Frenkel, I. and Kac, V., ‘Basic representations of affine Lie algebras and dual resonance models’, Invent. Math. 62 (1980), 23–66.Google Scholar
  3. 3.
    Frenkel, I., Lepowsky, J., and Meurman, A., Vertex Operator Algebras and the Monster, Academic Press, Boston, 1989.Google Scholar
  4. 4.
    Garland, H., ‘The arithmetic theory of loop groups’, Publ. Math. IHES 52 (1980), 5–136.Google Scholar
  5. 5.
    Goddard, P. and Olive, D., ‘Algebras, lattices and strings’, Vertex Operators in Mathematics and Physics, Publ. Math. Sci. Res. Inst. #3, 51–96, Springer-Verlag, 1984.Google Scholar
  6. 6.
    Hilton, P. and Stammbach, U., A Course in Homological Algebra, Springer-Verlag, New York, 1971.Google Scholar
  7. 7.
    Jacobson, N., Structure of Rings, AMS, 1956.Google Scholar
  8. 8.
    Kassel, C., ‘Kähler differentials and converings of complex simple Lie algebras extended over a commutative algebra’, J. Pure Appl. Algebra 34 (1985), 265–275.Google Scholar
  9. 9.
    Kass, S., Moody, R., Patera, J., and Slansky, R., Representations of Affine Algebras and Branding Rules, Univ. of California Press (to appear).Google Scholar
  10. 10.
    Moody, R., ‘A new class of Lie algebras’, J. Algebra 10 (1968), 211–230.Google Scholar
  11. 11.
    Moody, R. and Pianzola, A., ‘Infinite dimensional Lie algebras (a unifying overview)’, Algebras, Groups, and Geometries 4 (1987), 165–213.Google Scholar
  12. 12.
    Moody, R. and Pianzola, A., Lie Algebras with Triangular Decomposition, Vol. 1, Wiley (to appear).Google Scholar
  13. 13.
    Morita, J. and Yoshii, Y., ‘Universal central extensions of Chevalley algebras over Laurent series polynomial rings and GIM Lie algebras’, Proc. Japan Acad. Ser. A 61 (1985), 179–181.Google Scholar
  14. 14.
    Santharoubane, L. J., ‘The second cohomology group for Kac-Moody Lie algebras and Kähler differentials’, J. Algebra 125 (1989), 13–26.Google Scholar
  15. 15.
    Wilson, R., ‘Euclidean Lie algebras are universal central extensions’, Lie Algebras and Related Topics, Lecture Notes in Math. 933, 210–213, Springer-Verlag, 1982.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Robert V. Moody
    • 1
  • Senapathi Eswara Rao
    • 2
  • Takeo Yokonuma
    • 3
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada
  2. 2.School of MathematicsTata Institute for Fundamental ResearchBombayIndia
  3. 3.Department of MathematicsSophia UniversityTokyoJapan

Personalised recommendations