Euphytica

, Volume 24, Issue 1, pp 45–52 | Cite as

Matromorphy in Brassica oleracea L. VII. Research on products of microsporogenesis and gametogenesis from prickle pollinated plants

  • A. H. Eenink
Article

Summary

A research has been carried out on the occurrence of 2n gametes in Brassica oleracea and on their possible way of origination. After microsporogenesis it appeared that unreduced PMC's, dyads and triads occurred. Giant pollen grains with two (diploid) and four (haploid) generative nuclei, respectively, were found, resulting from a deviating cytokinesis and karyokinesis. Diploid heterozygous matromorphic embryos may develop from such unreduced gametes formed after macrosporogenesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böcher, T. W., 1951. Cytological and embryological studies in the amphiapomictic Arabis Holoboellii complex. Det. Kongl. Danske Vid. Selsk. Biol. Skr. 6 (7): 1–59.Google Scholar
  2. Brewbaker, J. L., 1967. The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Am. J. Bot. 54: 1069–1083.Google Scholar
  3. Clausen, J., P. Grun & M. Nobs, 1961–1962. Studies in Poa hybridization. Am. Rep. Carnegie Inst. Wash.: 325–334.Google Scholar
  4. Eenink, A. H., 1974a. Matromorphy in Brassica oleracea L. II. Differences in parthenogenetic ability and parthenogenesis inducing ability. Euphytica 23: 435–445.Google Scholar
  5. Eenink, A. H., 1974b. Matromorphy in Brassica oleracea L. III. The influence of temperature, delayed prickle pollination and growth regulators on the number of matromorphic seeds formed. Euphytica 23: 711–718.Google Scholar
  6. Eenink, A. H., 1974c. Matromorphy in Brassica oleracea L. IV. Formation of homozygous and heterozygous diploid products of gametogenesis and qualitative genetical research on matromorphic plants. Euphytica 23: 719–724.Google Scholar
  7. Eenink, A. H., 1974d. Matromorphy in Brassica oleracea L. V. Studies on quantitative characters of matromorphic plants and their progeny. Euphytica 23: 725–736.Google Scholar
  8. Fukushima, E., 1930. Formation of diploid and tetraploid gametes in Brassica. Jap. J. Bot. 5: 273–283.Google Scholar
  9. Gustafsson, Å, 1935. Studies on the mechanism of parthenogenesis. Hereditas 21: 1–112.Google Scholar
  10. Gustafsson, Å, 1938. The cytological differentiation of male and female organs in parthenogenetic species. Biol. Zentralblatt 58: 608–616.Google Scholar
  11. Hanneman Jr., R. E. & S. J. Peloquin, 1967. Crossability of 24 chromosome potato hybrids with 48 chromosome cultivars. Eur. Potato J. 10: 62–73.Google Scholar
  12. Hanneman Jr., R. E. & S. J. Peloquin, 1968. Ploidy levels of progeny from diploid-tetraploid crosses in the potato. Am. Potato J. 45: 255–261.Google Scholar
  13. Heyn, F. W., 1973. Beiträge zum Auftreten unreduzierter Gameten und zur Genetik einiger Merkmale bei den Brassiceae. Georg-August-Universität, Göttingen.Google Scholar
  14. Hodgkin, J. R. T. & A. J. Redfern, 1971. Production of potential parthenogenetic autodiploids. Scottish Hortic. Research Institute, Annual Report 18: 38.Google Scholar
  15. Hoffmann, W. & R. Peters, 1958. Versuche zu Herstellung synthetischer und semisynthetischer Rapsformen. Der Züchter 28: 40–51.Google Scholar
  16. Höglund, M., 1970. Meiosis in Solanum phureja. Hereditas 66: 183–188.Google Scholar
  17. Huziwara, H., Y. Mitsushima & Y. Omi, 1965. On an matroclinous plant appeared from the crossing Brassica oleracea L. x Brassica pekinensis Rupr. Jap. J. Breed. 15: 241–244.Google Scholar
  18. Iizuka, M., 1961. Meiotic irregularities caused by inbreeding in Brassica and Raphanus. Genetics 46: 873.Google Scholar
  19. Ivanovskaja, E. V., 1941. Cytological analysis of hybrids between diploid and tetraploid species of potatoes. Bull. Acad. Sci. USSR, Ser. Biol. 1: 21–33.Google Scholar
  20. Jahr, W., 1962a. Befruchtungsbiologie und Allopolyploidie bei dem Artbastard Sommerraps x Chinakohl. Kühn Archiv 76: 493–494.Google Scholar
  21. Jahr, W., 1962b. Befruchtungsbiologie und Allopolyploidie bei der Artkreuzung Sommerraps x Chinakohl. Der Züchter 32: 216–225.Google Scholar
  22. Karpechenko, G. D., 1924. Hybrids of Raphanus sativus L. x Brassica oleracea L. J. Genetics 14: 375–396.Google Scholar
  23. Karpechenko, G. D., 1927. The production of polyploid gametes in hybrids. Hereditas 9: 349–368.Google Scholar
  24. Karpechenko, G. D., 1928. Polyploid hybrids of Raphanus sativus L. x Brassica oleracea L. Z. indukt. Abstamm- und VererbLehre 48: 1–85.Google Scholar
  25. Karpechenko, G. D., 1937a. Experimental production of tetraploid hybrids Brassica oleracea L. x Brassica carinata Braun. Bull. appl. Bot., Ser. 2, 7: 53–68.Google Scholar
  26. Karpechenko, G. D., 1937b. Reciprocal hybrids between Raphanobrassica and tetraploid cabbage. Bull. appl. Bot., Ser 2, 7: 451–453.Google Scholar
  27. Kato, M. & T.Simura, 1970. Cytogenetical studies on Camellia species. Jap. J. Breed. 20: 200–210.Google Scholar
  28. Koopmans, A. & A. H. van der Burg, 1952. Chromosome number and chromosome behaviour of F1 and F2 plants of the cross Solanum phureja x Solanum tuberosum. Genetica 26: 102–106.Google Scholar
  29. Mackay, G. R., 1972. On the genetic status of the maternals induced by pollination of Brassica oleracea L. with Brassica campestris L. Euphytica 21: 71–77.Google Scholar
  30. Morinaga, T., 1929a. Interspecific hybridization in Brassica. II. Jap. J. Bot. 4: 277–289.Google Scholar
  31. Morinaga, T., 1929b. Interspecific hybridization in Brassica. III. J. Dept. Agric. Kyushu Imp. Univ. 2: 199–207.Google Scholar
  32. Morinaga, T., 1934. Interspecific hybridization in Brassica. VI. Cytologia 6: 62–67.Google Scholar
  33. Morinaga, T. & H. Kuriyama, 1937. On the autopolyploids of the rape. Cytologia Fujii Jubilaei Vol. 967–969.Google Scholar
  34. Olsson, G., A. Josefsson, A. Hagberg & S. Ellerström, 1955. Synthesis of the ssp. rapifera of Brassica napus. Hereditas 41: 241–249.Google Scholar
  35. Oppenheimer, H. C., 1933. Cytogenetische Untersuchungen an Bastarden knollentragenden Solanum Arten. I. S. chacoense Bitt x S. tuberosum L. Z. VererbLehre 65: 72–98.Google Scholar
  36. Pal, M. & T. N. Khoshoo, 1972. Evolution and improvement of cultivated amaranths IV. Variation in pollen mitosis in the F1 Amaranthus spinosus x A. dubius. Genetica 43: 119–129.Google Scholar
  37. Prakken, R. & M. S. Swaminathan, 1952. Cytological behaviour of some interspecific hybrids in the genus Solanum sect. Tuberarium. Genetica 26: 77–101.Google Scholar
  38. Ramanna, M. S., 1974. The origin of unreduced microspores due to aberrant cytokinesis in the meiocytes of potato and its genetic significance. Euphytica 23: 20–30.Google Scholar
  39. Ramanujam, S., 1940. Autotriploidy in Toria (Brassica campestris L.). Current Science: 325–326.Google Scholar
  40. Ramanujam, S., & D. Srinivasachar, 1943. Cytogenetic investigations in the genus Brassica and the artificial synthesis of Brassica juncea. Indian J. Genet. Plant Breed. 3: 73–88.Google Scholar
  41. Rudorf, W., 1951. Uber die Erzeugung und Eigenschaften synthetischer Rapsformen. Z. Pflanzenzüchtung 29: 35–54.Google Scholar
  42. Rutishauser, A., 1948. Pseudogamie und Polymorphie in der Gattung Potentilla. Arch. Jul. Klaus-Stiftg. f. Vererb. forschg 23: 267–424.Google Scholar
  43. Rutishauser, A., 1967. Protoplasmatologia Handbuch der Protoplasmaforschung. Springer-Verlag, Wien/New York.Google Scholar
  44. Rutishauser, A., 1969. Embryologie und Fortpflanzungsbiologie der Angiospermen. Springer-Verlag, Wien/New York.Google Scholar
  45. Satina, S. & A. F. Blakeslee, 1935. Cytological effects of a gene in Datura which causes dyad formation in sporogenesis. Bot. Gaz. 96: 521–532.Google Scholar
  46. Skiebe, K., 1969. Untersuchungen über das Auftreten von unreduzierten Gameten. Biologisches Zentralblatt 88: 47–60.Google Scholar
  47. Skiebe, K., 1972. Der Einflus eines Allelunterschiedes auf das Auftreten von unreduzierten Gameten. Biol. Zentralblatt 91: 111–119.Google Scholar
  48. Sikka, S. M., 1940. Cytogenetics of Brassica hybrids and species. J. Genetics 40: 441–509.Google Scholar
  49. Terasawa, Y., 1928. Bastardierungsversuche bei Brassica und Raphanus. Scientific Reports of the Tohoku Imperial University Ser. 4. 3: 827–841.Google Scholar
  50. Terasawa, Y., 1932. Konstante amphidiploide Brassica-Raphanus Bastarde. Proc. Imp. Academy Japan 8: 312–314.Google Scholar
  51. Tokumasu, S., 1965. On the origin of matromorphic plants of Brassica japonica obtained from the cross between Brassica and Raphanus. J. Japan Soc. hortic. Sci. 34: 223–231.Google Scholar
  52. U, N., 1935. Genome analysis in Brassica with special reference to the experimental formation of Brassica napus and peculiar mode of fertilization. Jap. J. Bot. 7: 389–452.Google Scholar
  53. U, N., T. Nagamatu & U. Midusima, 1937. A report on meiosis in the two hybrids Brassica alba Rabh. x Brassica oleracea L. and Eruca sativa Lam. x Brassica oleracea L. Cytologia Fujii Jubilaei Vol. I: 437–441.Google Scholar

Copyright information

© H. Veenman En Zonen B.V. Wageningen 1975

Authors and Affiliations

  • A. H. Eenink
    • 1
  1. 1.Institute for Horticultural Plant Breeding (IVT)Wageningenthe Netherlands

Personalised recommendations