Geometriae Dedicata

, Volume 14, Issue 3, pp 293–301

On t-distance sets of (0, ±1)-vectors

  • M. Deza
  • P. Frankl


We consider sets of (0, +1)-vectors in Rn, having exactly s non-zero positions. In some cases we give best or nearly best possible bounds for the maximal number of such vectors if all the pairwise scalar products belong to a fixed set D of integers. The investigated cases include D={ -d, d}, which corresponds to equiangular lines.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bland, R. and Las Vergnas, M.: ‘Orientability of matroids’. J. Comb. Theory B 24 (1978), 94–123.Google Scholar
  2. 2.
    Bos, A. and Seidel, J. J.: ‘Unit Vectors with Non-Negative Inner Products’. Technological University Eindhoven, Memorandum 1980, 10.Google Scholar
  3. 3.
    Delsarte, P., Goethals, J. M. and Seidel, J. J.: ‘Spherical Codes and Designs’. Geom. Dedicata 6 (1977), 363–388.Google Scholar
  4. 4.
    Deza, M. Erdös, P. and Frankl, P.: ‘Intersection Properties of Systems of Finite Sets’. Proc. London Mat Soc. 36 (1978), 369–384.Google Scholar
  5. 5.
    Deza, M. and Frankl, P.: ‘Every Large Set of Equidistant (0, +1, -1)-Vectors Forms a Sunflower’. Combinatorica 1 (1981), 225–231.Google Scholar
  6. 6.
    Dey, A. and Midha, C. K.: ‘Generalized Balanced Matrices and their Applications’. Utilitas Math. 10 (1976), 139–149.Google Scholar
  7. 7.
    Dunkl, C. F.: ‘A Krawtchouk Polynomial Addition Theorem and Wreath Product of Symmetric Groups’. Indiana Univ. Math. J. 25–4 (1976), 335–358.Google Scholar
  8. 8.
    Eades, P.: ‘Circulant (v, k, μ) Designs’. Proc. 7th Australian Conf. on Combinatorial Math., Newcastle, 1979; Lecture Notes in Math., 829, Springer, Berlin (1980), pp. 83–93.Google Scholar
  9. 9.
    Lemmens, P. W. H. and Seidel, J. J.: ‘Equiangular Lines’. J. Algebra 24 (1973), 494–512.Google Scholar
  10. 10.
    Levenstein, V. I.: ‘On the Maximum Cardinality of Codes with Bounded Absolute Value for Scalar Products’. Dokl. Akad. Nauk 263 (1982), 1303–1308 (in Russian).Google Scholar
  11. 11.
    Neumaier, A.: ‘Combinatorial Configurations in Therms of Distances’. Technological University Eindhoven, Memorandum 1981, 09.Google Scholar
  12. 12.
    Ramsey, F. P.: ‘On a Problem of Formal Logic’. Proc. London Math. Soc. 30 (1930), 264–286.Google Scholar
  13. 13.
    Tarnanen, H. K.: ‘On the Nonbinary Johnson Scheme’. Abstract of papers, Int. Symp. on Information Theory, 1982, Les Arcs, France, pp. 55–56.Google Scholar
  14. 14.
    Street, D. Y. and Rodger, C. A.: ‘Some results on Bhascar Rao designs’, Lecture Notes in Math., 829, Springer, Berlin (1980), pp. 238–245.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • M. Deza
    • 1
  • P. Frankl
    • 1
  1. 1.ParisFrance

Personalised recommendations