Solar Physics

, Volume 9, Issue 1, pp 131–149 | Cite as

Magnetic fields and the structure of the solar corona

I: Methods of calculating coronal fields
  • Martin D. Altschuler
  • Gordon NewkirkJr.


Several different mathematical methods are described which use the observed line-of-sight component of the photospheric magnetic field to determine the magnetic field of the solar corona in the current-free (or potential-field) approximation. Discussed are (1) a monopole method, (2) a Legendre polynomial expansion assuming knowledge of the radial photospheric magnetic field, (3) a Legendre polynomial expansion obtained from the line-of-sight photospheric field by a least-meansquare technique, (4) solar wind simulation by zero-potential surfaces in the corona, (5) corrections for the missing flux due to magnetograph saturation. We conclude (1) that the field obtained from the monopole method is not consistent with the given magnetic data because of non-local effects produced by monopoles on a curved surface, (2) that the field given by a Legendre polynomial (which is fitted to the measured line-of-sight magnetic field) is a rigorous and self-consistent solution with respect to the available data, (3) that it is necessary to correct for the saturation of the magnetograph (at about 80 G) because fields exceeding 80 G provide significant flux to the coronal field, and (4) that a zero-potential surface at 2.5 solar radii can simulate the effect of the solar wind on the coronal magnetic field.


Magnetic Field Solar Wind Mathematical Method Curve Surface Solar Corona 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biermann, L.: 1951, Z. Astrophys. 29, 274.Google Scholar
  2. Billings, D. E.: 1966, A Guide to the Solar Corona, Academic Press, New York.Google Scholar
  3. Bray, R. J. and Loughhead, R. E.: 1964, Sunspots, John Wiley and Sons, New York.Google Scholar
  4. Broxon, J. W.: 1942, Phys. Rev. 62, 508.Google Scholar
  5. Chapman, S.: 1943, Monthly Notices Roy. Astron. Soc. 103, 117.Google Scholar
  6. Chapman, S.: 1957, Smithsonian Contrib. Astrophys. 2, 1.Google Scholar
  7. Chapman, S. and Bartels, J.: 1940, Geomagnetism, Oxford University Press, London.Google Scholar
  8. Chapman, S. and Ferraro, V. C. A.: 1940, Terrest. Magnetism Atmospheric Elec. 45, 245.Google Scholar
  9. Eddy, J., Firor, J. W., and Lee, R. H.: 1967, Astron. J. 72 (7), 793 (abstract).Google Scholar
  10. Gauss, C. F.: 1839, Allgemeine Theorie des Erdmagnetismus, Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, 1.Google Scholar
  11. Godovnikov, N. V. and Smirnova, E. P.: 1965, Izv. Krymsk. Astrofiz. Observ. 33, 86.Google Scholar
  12. Harvey, J. W.: 1967, unpublished computer program.Google Scholar
  13. Harvey, J. W.: 1969, Ph.D. Thesis, Univ. of Colorado, Dept. of Astrogeophysics.Google Scholar
  14. Hildebrand, F. B.: 1956, Introduction to Numerical Analysis, McGraw-Hill, New York.Google Scholar
  15. Howard, R., Bumba, V., and Smith, S. F.: 1967, Atlas of Solar Magnetic Fields 1959–1966, Carnegie Institute of Washington, Publication No. 626.Google Scholar
  16. Meyer, F.: 1967, Private communication.Google Scholar
  17. Ness, N. F.: 1968, Ann. Rev. Astron. Astrophys. 6, 79.Google Scholar
  18. Newkirk, G.: 1967, Ann. Rev. Astron. Astrophys, 5, 213.Google Scholar
  19. Newkirk, G. A., Altschuler, M. D., and Harvey, J. W.: 1968, in Structure and Development of Solar Active Regions (ed. by K. O. Kiepenheuer), I.A.U. Symposium No. 35, D. Reidel Publ. Co., Dordrecht, p. 379.Google Scholar
  20. Newkirk, G. and Harvey, J.: 1968, Solar Phys. 3, 321.Google Scholar
  21. Parker, E. N.: 1958, Astrophys. J. 128, 664.Google Scholar
  22. Parker, E. N.: 1964, Astrophys. J. 139, 690.Google Scholar
  23. Parker, E. N.: 1965, Space Sci. Rev. 4, 666.Google Scholar
  24. Pneuman, G. W.: 1966, Astrophys. J. 145, 242.Google Scholar
  25. Rayrole, J., and Semel, M.: 1968, in Structure and Development of Solar Active Regions (ed. by K. O. Kiepenheuer), I.A.U. Symposium No. 35, D. Reidel Publ. Co., Dordrecht, p. 379.Google Scholar
  26. Pneuman, G. W.: 1968, Solar Phys. 3, 578.Google Scholar
  27. Pneuman, G. W.: 1969, Solar Phys. 6, 255.Google Scholar
  28. Roka, E. G. v.: 1950, Z. Astrophys. 27, 15.Google Scholar
  29. Rust, D.: 1966, Ph.D. Thesis, Univ. of Colorado, Dept. of Astrogeophysics.Google Scholar
  30. Schatten, K. H.: 1968, Nature 220, 1211.Google Scholar
  31. Schatten, K. H., Wilcox, J. M., and Ness, N. F.: 1969, Solar Phys. 6, 442.Google Scholar
  32. Schmidt, H. U.: 1964, in NASA Symposium on Physics of Solar Flares (ed. W. Hess) NASA SP-50, p. 107.Google Scholar
  33. Schmidt, H. U.: 1967, Private communication.Google Scholar
  34. Semel, M.: 1967, Ann. Astrophys. 30, 513.Google Scholar
  35. Sheeley, N. R.: 1967, Solar Phys. 1, 171.Google Scholar
  36. Stenflo, J. O.: 1966, Arkiv Astron. 4, No. 13, 173.Google Scholar
  37. Stenflo, J. O.: 1967, Acta Universitatis Lundensis, See. II, No. 35.Google Scholar
  38. Takakura, T.: 1966, Space Sci. Rev. 5, 80.Google Scholar
  39. Tandberg-Hanssen, E.: 1967, Solar Activity, Blaisdell Publishing Co., Waltham, Mass.Google Scholar
  40. Weber, E. J. and Davis, L., Jr.: 1967, Astrophys. J. 148, 217.Google Scholar

Copyright information

© D. Reidel Publishing Company 1969

Authors and Affiliations

  • Martin D. Altschuler
    • 1
  • Gordon NewkirkJr.
    • 1
  1. 1.High Altitude Observatory of the National Center for Atmospheric ResearchBoulderU.S.A.

Personalised recommendations