Experimental & Applied Acarology

, Volume 19, Issue 7, pp 361–379 | Cite as

Oribatid mites: prospects for their use in ecotoxicology

  • Philippe Lebrun
  • Nico M. van Straalen
Article

Abstract

Oribatid mites are a group of arthropods that have had remarkable evolutionary success with regard to species richness, variety of habitats colonized, life-cycle variation and reporductive patterns. The aim of this paper is to review some of the important features of Oribatida in relation to the possible use of these animals in ecotoxicological experiments. Their often sedentary way of living, combined with a narrow dependence on microhabitats qualify oribatids as potential indicator organisms for air and soil quality. Some species have been shown to be extremely sensitive to air pollutants such as SO2 and NO2. A low metabolic rate may be the driving force for slow development, low fertility, iteroparity and long adult life. Given these life-cycle characteristics, oribatids may be particularly vulnerable to intoxication by persistent contaminants. Work done on heavy metals suggests that the capacity for accumulation differs greatly between species. The camisiid Platynothrus peltifer accumulates high amounts of trace metals, specifically Mn. The toxicity of Cd, Cu and Pb has been studied in P. peltifer, demonstrating the necessity to consider egg production as a sensitive criterion. It is concluded that oribatid mites hold a great potential for use in ecotoxicology, due to the structural and functional complexity of their communities, and several peculiarities not found in other arthropods. The possibilities offered by this diverse group have not yet been fully employed by ecotoxicologists.

Key words

Oribatida ecotoxicology demography heavy metals life-cycle reproduction Platynothrus peltifer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André, H.M., Bolly, C. and Lebrun, Ph. 1982. Monitoring and mapping air pollution through an animal indicator: a new and quick method. J. Appl. Ecol. 19: 107–111.Google Scholar
  2. André, H.M., Lebrun, Ph., Masson, M. and Sartor, F. 1984. On the use of Humerobates rostrolamellatus (Acari) as an air pollution bioassay monitor. The incidence of SO2-NO2 synergism and of winter temperature. Sci. Total Environ. 39: 177–187.Google Scholar
  3. André, H.M., Noti, M.I. and Lebrun, Ph. 1994. The soil fauna: the other last biotic frontier. Biodiversity Conservat. 3: 45–56.Google Scholar
  4. Aoki, J.-I., Takaku, G. and Ito, F. 1994. Aribatidae, a new myrmecophilous oribatid mite family from Java. Int. J. Acarol. 20: 3–10.Google Scholar
  5. Behan-Pelletier, V.M. and Hill, S.B. 1983. Feeding habits of 16 species of Oribatei (Acari) from an acid peat bog, Glenamoy, Ireland. Rev. Écol. Biol. Sol 20: 221–268.Google Scholar
  6. Bellido, A. 1990. Caractéristiques biodémographiques d'un acarien oribate (Carabodes willmanni) des pelouses xérophiles. Can. J. Zool. 68: 2221–2229.Google Scholar
  7. Born, H., Puschnig, M. and Schettler-Wiegel, J. 1989. Einfluss von Aldicarb und Aldicarb-Sulfon auf die Bodenmesofauna (Enchytraeidae, Acari, Collembola) in Mikrokosmen. Verhandlungen der Gesellschaft für Ökologie (Essen 1988), 18: 373–378.Google Scholar
  8. Carey, J.R. 1983. Applied Demography for Biologists with Special Emphasis on Insects. Oxford University Press, New York, Oxford.Google Scholar
  9. Cicolani, B. and Di Sabatino, A. 1991. Sensitivity of water mites to water pollution. In Modern Acarology, Vol. 1, F. Dusbàbek and V. Bubva (eds), pp. 465–474. Academia, Prague, The Hague.Google Scholar
  10. Crommentuijn, T., Doodeman, C.J.A.M., Doornekamp, A., Van der Pol, J.J.C., Bedaux, J.J.M. and Van Gestel, C.A.M. 1994. Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods. Environ. Toxicol. Chem. 13: 1781–1789.Google Scholar
  11. Crommentuijn, T., Doodeman, C.J.A.M., Doornekamp, A., Van der Pol, J.J.C., Rademaker, M.C.J. and van Gestel, C.A.M. 1995. Sublethal sensitivity index as an ecotoxicity parameter measuring energy allocation under toxicant stress. Application to cadmium in soil arthropods. Ecotoxicol. Environ. Saf. 31: 192–200.Google Scholar
  12. Denmark, H.A. and Woodring, J.P. 1965. Feeding habits of Hemileius new species (Acari: Cryptostigmata; Oribatulidae) on Florida orchids. Florida Entomol. 48: 9–16.Google Scholar
  13. Denneman, C.A.J. and Van Straalen, N.M. 1991. The toxicity of lead and copper in reproduction toxicity tests using the oribatid mite Platynothrus peltifer. Pedobiologia 35: 305–311.Google Scholar
  14. Edwards, C.A. and Thompson, A.R. 1973. Pesticides and the soil fauna. Res. Rev. 45: 1–79.Google Scholar
  15. Fernandez, N.A. and Athias-Binche, F. 1986. Analyse démographique d'une population d'Hydrozetes lemnae Goggi, Acarien Oribate inféodé à la lentille d'eau Lemna gibba L. en Argentine. 1. Méthodes et techniques, démographie d'H. lemnae comparaisons avec d'autres Oribates. Zool. Jb. Syst. 113: 213–228.Google Scholar
  16. Gourbière, F., Lions, J.-C. and Pepin, R. 1985. Activité et développement d'Adoristes ovatus (C.L. Koch, 1839) (Acarien, Oribate) dans les aiguilles d'Abies alba Mill. Relations avec la décomposition et les microflores fongiques. Rev. Écol. Biol. Sol 22: 57–73.Google Scholar
  17. Grandjean, F. 1938. Sur l'ontogénie des Acariens. CR Acad. Sci. 206: 146–150.Google Scholar
  18. Gressit, J.L., Sedlacek, J. and Szent-Ivany, J.J.H. 1966. Flora and fauna on backs of large Papouan moss-forest weevil. Science 150: 1833–1835.Google Scholar
  19. Janssen, M.P.M. 1988. Species-dependent accumulation by forest litter arthropods. In Proc. 3rd. Int. Conf. Environmental Contamination, Venice, pp. 436–438, CEP Consultants, Edinburgh.Google Scholar
  20. Janssen, M.P.M. and Bergema, W.F. 1991. The effect of temperature on cadmium kinetics and oxygen consumption in soil arthropods. Environ. Toxicol. Chem. 10: 1493–1501.Google Scholar
  21. Janssen, M.P.M., Joosse, E.N.G. and Van Straalen, N.M. 1990. Seasonal variation in concentration of cadmium in litter arthropods from a metal contaminated site. Pedobiologia 34: 257–267.Google Scholar
  22. Janssen, M.P.M., Bruins, A., De Vries, T.H. and Van Straalen, N.M. 1991. Comparison of cadmium kinetics in four soil arthropod species. Arch. Environ. Contam. Toxicol. 20: 305–312.Google Scholar
  23. Janssen, M.P.M. and Hogervorst, R.F. 1993. Metal accumulation in soil anthropods in relation to micronutrients. Environ. Poll. 79: 181–189.Google Scholar
  24. Kehl, C. and Weigmann, G. 1992. Die Hornmilbenzönosen (Acari, Oribatida) an Apfelbämen im Stadtgebiet von Berlin als Bioindikatoren für die Luftqualität. Zool. Beitr. NF 34: 261–271.Google Scholar
  25. Koehler, H.H. 1992. The use of soil mesofauna for the judgement of chemical impact on ecosystems. Agricult. Ecosyst. Environ. 40: 193–205.Google Scholar
  26. Lebrun, Ph. 1967. Note sur quelques Oribates (Acarina: Oribatei) de la faune cavernicole de Belgique. Ann. Soc. R. Ent. de Belgique 103: 183–188.Google Scholar
  27. Lebrun, Ph. 1970. Ecologie et biologie de Nothrus palustris (C.L. Koch, 1839). 3ème note: Cycle de vie. Acarologia 12: 193–207.Google Scholar
  28. Lebrun, Ph. 1977. Comparaison des effects des températures constantes ou variables sur la durée de développement de Damaeus onustus (Acarina: Oribatei). Acarologia 19: 136–143.Google Scholar
  29. Lebrun, Ph. 1979. Soil mite community diversity. In Recent advances in acarology, J.G. Rodriguez (ed.), pp. 603–613. Academic Press, New York.Google Scholar
  30. Lebrun, Ph. and Wauthy, G. 1981. Quelques observations et réflexions sur les peuplements d'oribates hypogés (Acariens). Ann. Soc. R. Zool. Belgique 111: 131–142.Google Scholar
  31. Lebrun, Ph., Van Impe, G., de Saint-Georges-Gridelet, D., Wauthy, G. and André, H.M. 1991. The life strategies of mites. In The Acari: reproduction development and life history strategies, R. Schuster and P.W. Murphy (eds.), pp. 3–22. Chapman and Hall, New York.Google Scholar
  32. Lions, J.-C. 1982. Statistique sexuelle chez deux formes d'oribates proches de Quadroppia quadricarinata (Michael 1885). Acarologia 23: 373–389.Google Scholar
  33. Lions, J.-C. and Gourbière, F. 1988. Populations adultes et immatures d'Adoristes ovatus (Acarien, Oribate) dans les aiguilles de la litière d'Abies alba. Rev. Écol. Biol. Sol 25: 343–352.Google Scholar
  34. Ludwig, M., Kratzmann, M. and Alberti, G. 1993. The influence of some heavy metals on Steganacarus magnus (Acari, Oribatida). Angew. Zool. 30: 455–467.Google Scholar
  35. Luxton, M. 1972. Studies on the oribatid mites of a Danish beechwood soil. I. Nutritional biology. Pedobiologia 12: 434–463.Google Scholar
  36. Mitchell, M.J. 1977. Population dynamics of oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Pedobiologia 17: 305–319.Google Scholar
  37. Neuhauser, E.F., Norton, R.A., Loehr, R.C. and Sillman, D.Y. 1989. Earthworm and soil microarthropods responses to oily waste application. Soil Biol. Biochem. 21: 275–281.Google Scholar
  38. Norton, R.A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigma. In Mites, M.A. Houck (ed.), pp. 99–135. Chapman and Hall, New York.Google Scholar
  39. Norton, R.A. and Palmer, S.C. 1991. The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In The Acari: reproduction, development and life-history strategies, R. Schuster and P.W. Murphy (eds.), pp. 107–136. Chapman and Hall, New York.Google Scholar
  40. Norton, R.A., Williams, D.D., Hogg, I.D. and Palmer, S.C. 1988. Biology of oribatid mite Mucronothrus nasalis (Acari: Oribatida: Trhypochthoniidae) from a small coldwater springbrook in eastern Canada. Can. J. Zool. 66: 622–629.Google Scholar
  41. Oliver, J.H. 1989. Biology and systematics of ticks (Acari: Ixodida). Ann. Rev. Ecol. Syst. 20: 397–430.Google Scholar
  42. Palmer, S.C. and Norton, R.A. 1992. Genetic diversity in thelytokous oribatid mites (Acari: Acariformes: Desmonomata). Biochem. System. Ecol. 20: 219–231.Google Scholar
  43. Persoone, G. and Janssen, C.R. 1993. Freshwater invertebrate toxicity tests. In Handbook of ecotoxicology, Vol. I, P. Calow (ed.), pp. 51–65. Blackwell, London.Google Scholar
  44. Schatz, H. 1985. The life cycle of an Alpine oribatid mite, Oromurcia sudetica Willmann. Acarologia 26: 95–100.Google Scholar
  45. Schlosser, H.J. and Riepert, F. 1992. Entwicklung eines Prüfverfahrens für Chemikalien an Bodenraubmilben (Gamasina). Teil 1: Biologie der Bodenraubmilbe Hypoaspis aculeifer Canestrini, 1883 (Gamasina) unter Laborbedingungen. Zool Beitr. 34: 395–412.Google Scholar
  46. Sheppard, S.C. and Evenden, W.G. 1994. Simple whole-soil bioassay based on microarthropods. Bull. Environ. Contam. Toxicol. 52: 95–101.Google Scholar
  47. Sibly, R.M. and Calow, P. 1989. A life-cycle theory of responses to stress. Biol. J. Linn. Soc. 37: 101–116.Google Scholar
  48. Stamou, G.P., Kattoulas, M., Cancela da Fonseca, J.-P. and Margaris, N.S. 1981. Observations on the biology and ecology of Achipteria holomonensis (Acarina, Oribatida). Pedobiologia 23: 53–58.Google Scholar
  49. Tagami, K., Ishihara, T., Hosokawa, J.-I., Ito, M. and Fukuyama, K. 1992. Occurence of aquatic oribatid and astigmatid mites in swimming pools. Water Res. 26: 1549–1554.Google Scholar
  50. Van Impe, G. and Hance, Th. 1993. Une technique d'évaluation de la sensibilité variétale au tétranyque tisserand, Tetranychus urticae Koch (Acari: Tetranychidae). Application au haricot, au concombre, à la tomate et au fraisier. Agronomie 13: 739–749.Google Scholar
  51. Van Straalen, N.M. and Van Gestel, C.A.M. 1993. Soil invertebrates and micro-organisms. In Handbook of Ecotoxicology, Vol. I, P. Calow (ed.), pp. 251–277. Blackwell, London.Google Scholar
  52. Van Straalen, N.M. and Van Wensem, J. 1986. Heavy metal content of forest litter arthropods as related to body-size and trophic level. Environ. Pollut. (Series A) 42: 209–221.Google Scholar
  53. Van Straalen, N.M., Geurs, M. and Van der Linden, J.M. 1987. Abundance, pH preference and mineral content of Oribatida and Collembola in relation to vitality of pine forests in the Netherlands. In: Acid rain: scientific and technical advances, R. Perry, R.M. Harrison, J.N.B. Bill and J.N. Lester (eds), pp. 674–679. Selper Ltd. London.Google Scholar
  54. Van Straalen, N.M., Kraak, M.H.S. and Denneman, C.A.J. 1988. Soil microarthropods as indicators of soil acidification and forest decline in the Veluwe area, The Netherlands. Pedobiologia 32: 47–55.Google Scholar
  55. Van Straalen, N.M., Schobben, J.H.M. and De Goede, R.G.M. 1989. Population consequences of cadmium toxicity in soil microarthropods. Ecotoxicol. Environ. Saf. 17: 190–204.Google Scholar
  56. Wallwork, J.A. 1983. Oribatids in forest ecosystems. Ann. Rev. Entomol. 28: 109–130.Google Scholar
  57. Wallwork, J.A., MacQuitty, M., Silva, S. and Whitford, W.G. 1986. Seasonality of some Chihuahuan desert soil oribatid mites (Acari: Cryptostigmata). J. Zool. (Lond.) 208: 403–416.Google Scholar
  58. Webb, N.R. 1977. Observations on Steganacarus magnus general biology and life cycle. Acarologia 19: 686–696.Google Scholar
  59. Webb, N.R. 1989. Observations on the life cycle of Steganacarus magnus (Acari: Cryptostigmata). Pedobiologia 33: 293–299.Google Scholar
  60. Weigmann, G. and Jung, E. 1992. Die Hornmilben (Acari, Oribatida) an Strassenbaümen in Stadtzonen unterschiedlicher Luftbelastung in Berlin. Zool. Beitr. NF 34: 273–287.Google Scholar
  61. Weigmann, G. and Kratz, W. 1987. Oribatid mites in urban zones of West Berlin. Biol. Fert. Soils 3: 81–84.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Philippe Lebrun
    • 1
  • Nico M. van Straalen
    • 2
  1. 1.Unit of Ecology and BiogeographyCatholic University of LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Ecology and EcotoxicologyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations