Advertisement

Biometals

, Volume 9, Issue 2, pp 143–150 | Cite as

Desferrioxamine-dependent iron transport in Erwinia amylovora CFBP1430: cloning of the gene encoding the ferrioxamine receptor FoxR

  • Rémy Kachadourian
  • Alia Dellagi
  • Jacqueline Laurent
  • Laurent Bricard
  • Gerhard Kunesch
  • Dominique Expert
Research Papers

Abstract

Iron deprivation of Erwinia amylovora CFBP1430, a species causing fire blight on Pomoïdeae, was shown to induce the production of siderophores of the desferrioxamine (dfo) family and two outer membrane polypeptides with apparent molecular weight of about 70 and 80 kDa, respectively. Cyclic dfo E was characterized as the major metabolite. Phage MudIIpR13 insertional mutagenesis and screening on CAS-agar medium yielded three dfo non-producing and one overproducing clones. These clones failed to grow in the presence of the Fe(III) chelator EDDHA and were determined further as dfo and ferrioxamine transport negative mutants, respectively. The transport mutant which appeared to lack the 70 kDa polypeptide in the outer membrane allowed the purification of dfo E. Growth under iron limitation of dfo negative mutants was stimulated with ferrioxamine E and B but not with other ferrisiderophores tested. The host DNA sequence flanking the left terminal part of the MudIIpR13 prophage responsible for the transport mutation was cloned and used to probe a parental gene library by DNA-DNA hybridization. Two recombinant cosmids restoring the transport mutation to normal were identified. Both cosmids also conferred the ability to utilize ferrioxamine B and E as iron sources on a FhuE1 mutant of Escherichia coli. This correlated with the production of an additional polypeptide of 70 kDa in the outer membrane of E. coli transconjugants, thus confirming that this protein serves the ferrioxamine receptor function (FoxR) in E. amylovora.

Keywords

desferrioxamines Erwinia amylovora ferrioxamine receptor iron transport pathogenicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnow LE. 1937 Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118, 531–537.Google Scholar
  2. Barny M. Guinebretière MH, Marçais B. Coissac E. Paulin J-P. Laurent J. 1990 Cloning of a large gene cluster involved in Erwinia amylovora CFBP1430 virulence. Mol Microbiol 4, 777–786.Google Scholar
  3. Bäumler AJ, Hantke K. 1992 Ferrioxamine uptake in Yersinia enterocolitica: characterization of the receptor protein FoxA. Mol Microbiol 6, 1309–1321.Google Scholar
  4. Berner I. Winkelmann G. 1990 Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein (Fox A) in Erwinia herbicola (Enterobacter agglomerans). Biol met 2, 197–202.Google Scholar
  5. Berner I, Konelschny-Rapp S, Jung G. Winkelmann G. 1988 Characterization of ferrioxamine E as the principal siderophore of Erwinia herbicola (Enterohacter agglomerans). Biol Met 1, 51–56.Google Scholar
  6. Bickel H. Bosshardt R, Gäumann E. et al. 1960 Über die Isolierung und Charakterisierung der Ferrioxamine A-F, neuer Wuchsstoffe der Sideramin-Gruppe. Helv Chim Acta 43, 2118–2128.Google Scholar
  7. Brisset M-N, Paulin J-P. 1992 A reliable strategy for the study of disease and hypersensitive reactions induced by Erwinia amylovora. Plant Sci 85, 171–177.Google Scholar
  8. Brown JC. 1978 Mechanism of iron uptake by plants. Plant Cell Environ 1, 249–257.Google Scholar
  9. Bullen JJ, Griffith E. 1987 Iron and Injection. New York: Wiley-Intcrscience.Google Scholar
  10. Csàky T. 1948 On the estimation of bound hydroxylamine in biological materials. Acta Chim Scand 2, 450–454.Google Scholar
  11. Enard C, Diolez A. Expert D. 1988 Systemic virulence of Erwinia chrysanthemi requires a functional iron assimilation system. J Bacteriol 170, 2419–2426.Google Scholar
  12. Expert D, Toussaint A. 1985 Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquision in phytopathogenicity. J Bacteriol 170, 163–170.Google Scholar
  13. Feistner GJ, Stahl DC, Gabrik AH. 1993 Proferrioxamine siderophores of Erwinia amylovora. A capillary liquid chromatographic/electrospray tandem mass spectrometric study. Org Mass Spectrom 28, 163–165.Google Scholar
  14. Fiedler HP, Meiwes J, Werner I, Konetschny-Rapp S, Jung G. 1990 Identification of ferrioxamines by high-performance liquid chromatography and diode-array detection. J Chromatogr 513, 255–262.Google Scholar
  15. Franza T, Enard C, Van Gisegem F, Expert D. 1990 Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron transport system. Characterization of a gene cluster involved in uptake and biosynthetic pathway. Mol Microbiol 5, 1319–1329.Google Scholar
  16. Hartmann A, Fiedler H-P, Braun V. 1979 Uptake and conversion of the antibiotic albomycin by Escherichia coli K-12. Eur J Biochem 99, 517–524.Google Scholar
  17. Huber P. 1984 Zur Strukturaufklärung einiger Sideramine und Sideromycine. PhD thesis, ETH Zürich.Google Scholar
  18. Hussein S, Hantke K, Braun V. 1981 Citrate-dependent iron transport system in Escherichia coli K-12. Eur J Biochem 117, 431–437.Google Scholar
  19. Ischimaru CA, Loper JE. 1992 High-affinity iron transport systems present in Erwinia carotovora include the hydroxamate siderophore aerobactin. J Bacteriol 174, 2993–3003.Google Scholar
  20. Keller-Schierlein W, Prelog V. 1962 Ferrioxamin G. Helv Chim Acta 45, 590–595.Google Scholar
  21. Masclaux C. Expert D. 1995 Signalling potential of iron in plant microbe interactions: the pathogenic switch of iron transport in Erwinia chrysanthemi. Plant J 7, 121–128.Google Scholar
  22. Matzanke B, Berner I. Bill E. Trautwein A. Winkelmann G. 1991 Transport and utilization of Ferrioxamine-E-bound iron in Erwinia herbicola (Enterobacter agglomerans). Biol Met 4, 181–185.Google Scholar
  23. Mei B. Budde AD, Leong SA. 1993 Sidl, a gene initiating siderophore biosynthesis in Ustilaao maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci USA 90, 903–907.Google Scholar
  24. Meyer J-M, Abdallah M. 1980 The siderochromes of non-fluorescent Pseudomonads: production of nocardamine by Pseudomonas stutzeri. J Gen Microbiol 118, 125–129.Google Scholar
  25. Miller JH. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  26. Miller MJ. 1989 Synthesis and therapeutic potential of hydroxamic- acid-based siderophores and analogues. Chem Rev 89, 1563–1579.Google Scholar
  27. Müller A, Raymond K. 1984 Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J Bacteriol 160, 304–312.Google Scholar
  28. Müller A, Zähner H. 1968 Ferrioxamine aus Eubacteriales. Archiv Mikrobiologie 62, 257–263.Google Scholar
  29. Neema C, Laulhere J-P, Expert D. 1993 Iron deficiency induced by chrysobactin in Saintpaulia ionantha leaves inoculated with Erwinia chrysanthemi. Plant Physiol 102, 967–973.Google Scholar
  30. Paulin J-P, Samson R. 1973 Le feu bactérien en France II: caractères des souches d'Erwinia amylovora (Burrill) Winslow et al. 1920 isolées du foyer franco-belge. Ann Phytopathol 5, 389–397.Google Scholar
  31. Persmark M, Expert D. Neilands JB. 1989 Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity. J Biol Chem 264, 3187–3193.Google Scholar
  32. Ratet P. Schell J, Bruijin FJ. 1988 Mini-Mulac transposons with broad-host range origins of conjugal transfer and replication designed for gene regulation studies in Rhizobiaceae. Gene 63, 41–52.Google Scholar
  33. Reissbrodt R, Rabsch W, Chapeaurouge A, Jung G, Winkelmann G. 1990 Isolation and identification of ferrioxamine G and E in Hafnia alvei. Biol Met 3, 54–60.Google Scholar
  34. Rogers HJ. 1973 Iron-binding catechols and virulence in Escherichia coli. Infect Immun 7, 445–456.Google Scholar
  35. Sauer M, Hantke K, Braun V. 1987 Ferric-coprogen FhuE of Escherichia coli: processing and sequence common to all TonB-dependent outer membrane receptor proteins. J Bacteriol 169, 2044–2049.Google Scholar
  36. Sauvage C, Expert D. 1994 Differential regulation by iron of Erwinia chrysanthemi pectate lyases: pathogenicity of iron transport regulator (cbr) mutants. Mol Plant-Microbe Interact 7, 171–177.Google Scholar
  37. Schupp T, Toupet C, Divers M. 1988 Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene 64, 179–188.Google Scholar
  38. Schwyn B, Neilands JB. 1987 Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.Google Scholar
  39. Slade MB, Tiffin AI. 1984 Biochemical and serological characterization of Erwinia. Methods Microbiol 15, 228–293.Google Scholar
  40. Vanneste JL, Expert D, 1990 Detection of an iron uptake system in E. amylovora. Acta Horticult 273, 249–253.Google Scholar
  41. Weinberg E. 1984 Iron withholding: a defence against infection disease. Physiol Rev 64, 65–102.Google Scholar
  42. Wiebe C, Winkelmann G. 1975 Kinetic studies on the specificity of chelate iron uptake in Asperaillus. J Bacteriol 123, 837–842.Google Scholar
  43. Yang C, Leong J. 1982 Production of deferriferrioxamines B and E from a ferroverdin-producing Streptomyces species. J Bacteriol 149, 381–383.Google Scholar

Copyright information

© Rapid Communications of London Ltd 1996

Authors and Affiliations

  • Rémy Kachadourian
    • 1
  • Alia Dellagi
    • 1
    • 2
  • Jacqueline Laurent
    • 1
    • 2
  • Laurent Bricard
    • 1
  • Gerhard Kunesch
    • 1
  • Dominique Expert
    • 1
    • 2
  1. 1.Laboratoire de Chimie Bioorganique et Bioinorganique, CNRS URA 1384, Université Paris-SudOrsayFrance
  2. 2.Laboratoire de Pathologie Végétale, INRA/INA P-GParisFrance

Personalised recommendations