Statistics and Computing

, Volume 5, Issue 2, pp 121–125

Simulation of truncated normal variables

  • Christian P. Robert

Abstract

We provide simulation algorithms for one-sided and two-sided truncated normal distributions. These algorithms are then used to simulate multivariate normal variables with convex restricted parameter space for any covariance structure.

Keywords

Accept-reject Gibbs sampling Markov chain Monte Carlo censored models order-restricted models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, M. H. and Deely, J. (1992) Application of a new Gibbs Hit-and-Run sampler to a constrained linear multiple regression problem. Technical report, Purdue University, Lafayette, IN.Google Scholar
  2. Devroye, L. (1985) Non-uniform random variate generation. Springer-Verlag, New York.Google Scholar
  3. Dykstra, R. L. and Robertson, T. (1982) An algorithm for isotonic regression for two or more independent variables. Annals of Statistics, 10, 708–716.Google Scholar
  4. Gelfand, A. E. and Smith, A. F. M. (1990) Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.Google Scholar
  5. Gelfand, A. E., Smith, A. F. M. and Lee, T. M. (1992) Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. Journal of the American Statistical Association, 87, 523–532.Google Scholar
  6. Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457–511.Google Scholar
  7. Geyer, C. J. (1992) Practical Monte-Carlo Markov Chain (with discussion). Statistical Science, 7, 473–511.Google Scholar
  8. Hastings, W. K. (1971) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.Google Scholar
  9. Marsaglia, G. (1964) Generating a variable from the tail of a normal distribution. Technometrics, 6, 101–102.Google Scholar
  10. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953) Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–91.Google Scholar
  11. Qian, W. and Titterington, D. M. (1991) Estimation of parameters in hidden Markov models. Philosophical Transactions of the Royal Society of London A, 337, 407–428.Google Scholar
  12. Ripley, B. D. (1987) Stochastic simulation. Wiley, New York.Google Scholar
  13. Robertson, T., Wright, F. T. and Dykstra, R. L. (1988) Order restricted statistical inference. Wiley, New York.Google Scholar
  14. Tanner, M. (1993) Tools for statistical inference, 2nd edn. Springer-Verlag, New York.Google Scholar
  15. Tanner, M. and Wong, W. (1987) The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82, 528–550.Google Scholar
  16. Tierney, L. (1991) Markov chains for exploring posterior distributions. Computer Sciences and Statistics: Proceedings of the 23 Symposium on the Interface, 563–570.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Christian P. Robert
    • 1
  1. 1.URA CNRS 1378, Université de Rouen and CRESTInsee, ParisFrance

Personalised recommendations