Advertisement

Constraints

, Volume 1, Issue 1–2, pp 139–168 | Cite as

Practical applications of constraint programming

  • Mark Wallace
Article

Abstract

Constraint programming offers facilities for problem modelling, constraint propagation and search. This paper discusses the resulting benefits for practical applications which exploit these facilities.

The modelling facilities are particularly exploited in applications to verification, both of circuits and of real time control systems. The propagation facilities are exploited in applications involving user feedback and graphical interfaces. The search facilities are exploited in applications such as scheduling and resource allocation, which involve combinatorial problems.

The paper surveys applications under each of these three headings.

Keywords

survey applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggoun, A. & Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and placement problems. Journal of Mathematical and Computer Modelling, 17(7):57–73.Google Scholar
  2. Baptiste, P. & Le Pape, C. (1995). A theoretical and experimental comparison of constraint propagation techniques for disjunctive scheduling. In C. Mellish, editor, Proc. IJCAI, volume 1, pages 600–606.Google Scholar
  3. Bellone, J., Chamard, A. & Fischler, A. (1995). Constraint logic programming decision support systems for planning and scheduling aircraft manufacturing at dassault aviation. In (Roth, 1995).Google Scholar
  4. Benhamou, F., McAllester, D. & Van Hentenryck, P. (1994). Clp(intervals) revisited. In Proc. ILPS-94, pages 124–138, Ithaca.Google Scholar
  5. Berger, R. (1995). Constraint-based gate allocation for airports. In (ILOG Users, 1995).Google Scholar
  6. Bessière, C. (1994). Arc-consistency and arc-consistency again. Artificial Intelligence, 65(1): 179–190.Google Scholar
  7. Boizumault, P., Delon, Y. & Péridy, L. (1994). Planning exams using constraint logic programming. In Leon Stirling, editor, Proc. 2nd International Conference on the Practical Applications of Prolog.Google Scholar
  8. Bormann, J., Lohse, J., Payer, M. & Schmid, R. (1995). Circuit verification environment cve2. Technical Report Version 1.72, ZFE BT SE 12 Siemens AG. (User Manual and System Description).Google Scholar
  9. Borning, A. & Freeman-Bènson, B.N. (1995). The OTI constraint solver: A constraint library for constructing graphical user interfaces. In Proc Principles and Practice of Constraint programming CP'95. Springer Verlag.Google Scholar
  10. Borning, A. (1981). The programming language aspects of ThingLab, a constraint-oriented simulation laboratory. ACM Transactions on Programming Languages and Systems, 3(4):353–387.Google Scholar
  11. Brodsky, A. & Kornatsky, Y. (1995). The LyriC language: Querying constraint objects. In Proc. SIGMOD, pages 35–46, San Jose.Google Scholar
  12. Bryant, R.E. (1986). Graph based algorithms for boolean function manipulation. IEEE Transactions on Computers, 35(8):677–691.Google Scholar
  13. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L. & Hwang, L.J. (1992). Symbolic model checking: 1020 states and beyond. Information and Computation, 98:142–170.Google Scholar
  14. Büttner, W. & Simonis, H. (1987). Embedding Boolean expressions into logic programming. Journal of Symbolic Computation, 4:191–205.Google Scholar
  15. Caseau, Y. (1993). Constraint programming and operations research: Mixed solutions for mixed problems. In Proc. Principles and Practice of Constraint Programming.Google Scholar
  16. Caseau, Y. & Laburthe, F. (1994). Improved clp scheduling with task intervals. In P. Van Hentenryck, editor, Proceedings of the 11th International Conference on Logic Programming, Santa Margherita. MIT Press.Google Scholar
  17. Chamard, A. & Pradelles, C. (1994). CHIP applications at dassault aviation. COSYTEC SA, Parc Club Orsay Universite, 4, rue Jean Rostand, 91893 Orsay Cedex, France.Google Scholar
  18. Cheeseman, P., Kanefsky, R. & Taylor, W.M. (1991). Where the really hard problems are. In J. Mylopoulos and R. Reiter, editors, Proc. IJCAI, pages 331–337. Morgan Kaufmann.Google Scholar
  19. Chew, T. & David, J.-M. (1992). A constraint-based spreadsheet for cooperative production planning. In AAAI Sigman Workshop in Knowledge-Based Production Planning, Scheduling and Control.Google Scholar
  20. Chew, T.L, David, J.-M., Nguyen, A. & Tourbier, Y. (1992). Solving constraint satisfaction problems with simulated annealing; the car sequencing problem revisited. In Proc. 12th International Conference on AI, Expert Systems and Natural Language, 1992.Google Scholar
  21. Codognet, P., Fages, F. & Sola, T. (1993). A metalevel compiler of clp(fd) and its combination with intelligent backtracking. Technical Report LACS-93, Thompson-CSF.Google Scholar
  22. Colmerauer, A. (1990). An introduction to Prolog III. Communications of the ACM, 33(7):69–90.Google Scholar
  23. COSYTEC, (1995). CHIP C library. COSYTEC SA, Parc Club Orsay Universite, 4, rue Jean Rostand, 91893 Orsay Cedex, France.Google Scholar
  24. COSYTEC, (1994). Proceedings of the CHIP users club. COSYTEC SA, Parc Club Orsay Universite, 4, rue Jean Rostand, 91893 Orsay Cedex, France.Google Scholar
  25. Crabtree, B. (1995). Resource scheduling - comparing simulated annealing with constraint programming. BT Technology Journal, 13(1).Google Scholar
  26. Cras, J.-Y. (1993). Using constraints in servicing: A few short tales. Presented at the 2nd CHIC-PRINCE Workshop, ECRC.Google Scholar
  27. Cras, J.-Y. (1994). Using constraint logic programming: A few short tales. In M. Bruynooghe, editor, Proc. International Symposium on Logic Programming.Google Scholar
  28. Creemers, T., Giralt, L.R., Riera, J., Ferrarons, C., Roca, J. & Corbella, X. (1995). Constraint-based maintenance scheduling on an electric power distribution network. In (Roth, 1995), pages 135–144.Google Scholar
  29. Cruz, I. (1994). Expressing Constraints for Data Display Specification: A Visual Approach. In (Saraswat & Van Hentenryck, 1994).Google Scholar
  30. Dague, P., Jehl, O. & Taillibert, P. (1990). An Interval Propagation and Conflict Recognition Engine for Diagnosing Continuous Dynamic Systems, pages 16–31, in (Gottlob & Nejdl, 1990).Google Scholar
  31. David, J.-M. & Chew, T.-L. (1995). Constraint-based applications in production planning; examples from the automotive industry. In (Wallace, 1995), pages 37–52.Google Scholar
  32. Davis, E. (1987). Constraint propagation with interval labels. Artificial Intelligence, 32:281–331.Google Scholar
  33. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T. & Berthier, F. (1988a). The constraint logic programming language chip. In Proceedings of the International Conference on Fifth Generation Computer Systems (FGCS'88), pages 693–702, Tokyo, Japan.Google Scholar
  34. Dincbas, M., Simonis, H. & Van Hentenryck, P. (1988b). Solving large scheduling problems in logic programming. In EURO-TIMS Joint International Conference on Operations Research and Management Science, Paris, France.Google Scholar
  35. Dincbas, M., Simonis, H. & Van Hentenryck, P. (1988c). Solving the car sequencing problem in constraint logic programming. In European Conference on Artificial Intelligence (ECAI-88), Munich, W.Germany.Google Scholar
  36. Dincbas, M., Simonis, H. & Van Hentenryck, P. (1988d). Solving a cutting-stock problem in constraint logic programming. In Fifth International Conference on Logic Programming (ICLP'88), Seattle, USA. M.I.T Press.Google Scholar
  37. Donikian, S. & Hegron, G. (1994). Constraint Management in a Declarative Design Method for 3D Scene Sketch Modelling. In (Saraswat & Van Hentenryck, 1994).Google Scholar
  38. Dresse, A. (1995). A constraint programming library dedicated to timetabling. In (ILOG Users, 1995).Google Scholar
  39. ECRC, (1995). ECLiPSe 3.5. Technical report, ECRC, 1995. http://www.ecrc.de/eclipse/eclipse.html.Google Scholar
  40. EDIF, (1989). EDIF electronic design interchange format. Technical Report Version 2, Electronic Industries Association, 1989. Reference Manual.Google Scholar
  41. El-Sakkout, H. (1996). Modelling and solving a fleet assignment in a flexible environment. Proc. Practical Applications of Constraint Technology.Google Scholar
  42. Evans, O. (1993). How to use the spreadsheet manager. Technical report, ICL, Lovelace Road, Bracknell, England. CHIC, Esprit project 5291, Report T3.5/W2.2.Google Scholar
  43. Fages, F., Fowler, J. & Sola, T. (1994). Handling preferences in constraint logic programming with relational optimisation. In M. Hermenegildo and J. Penjaam, editors, Proc. 6th International Symposium on Programming Language Implementation and Logic Programming, pages 261–276, Madrid.Google Scholar
  44. Feldman, J., Hoyos, A., Sekas, N. & Vergamini, D. (1995). Scheduling engine for the long island lighting company. In (ILOG Users, 1995).Google Scholar
  45. Fernandez, J. & Sanchez, E. (1995). A cashier assignment system. In (ILOG Users, 1995).Google Scholar
  46. Fikes, R.E. (1970). REF-ARF: A system for solving problems stated as procedures. Artificial Intelligence, 1:27–120.Google Scholar
  47. Filkhorn, T., Schneider, H.-A., Scholz, A., Strasser, A. & Warkentin, P. (1995). SVE system verification environment. Technical Report SVE, ZFE BT SE Siemens AG.Google Scholar
  48. Fox, M. (1994). ISIS:A Retrospective, pages 3–28. In (Zweben & Fox, 1994).Google Scholar
  49. Frangouli, H., Harmandas, V. & Stamatopoulos, P. (1995). UTSE: Construction of optimum timetables for university courses - a CLP-based approach. In (Roth, 1995), pages 225–243.Google Scholar
  50. Freeman-Benson, B.N., Maloney, J. & Borning, A. (1990). An incremental constraint solver. Communications of the ACM, 33(1):54–63.Google Scholar
  51. Freuder, E.C. (1978). Synthesizing constraint expressions. Communications of the ACM, 21(11):958–966.Google Scholar
  52. Freuder, E.C. (1982). A sufficient condition for backtrack-free search. Journal of the ACM, 29(1):24–32.Google Scholar
  53. Freuder, E.C. & Mackworth, A.K. (1992). Introduction to the special volume on constraint-based reasoning. Artificial Intelligence, 58(1–2):1–20.Google Scholar
  54. Freuder, E.C. (1994). Exploiting structure in constraint satisfaction problems. In B. Mayoh, E. Tyugu, & J.Penjaam, editors, Constraint Programming: Proceedings 1993 NATO ASI Parnu, Estonia, NATO Advanced Science Institute Series, pages 54–79. Springer-Verlag.Google Scholar
  55. Freuder, E.C. & Wallace, R.J. (1992). Partial constraint satisfaction. Artificial Intelligence, 58:21–70.Google Scholar
  56. Fromherz, M. & Saraswat, V. (1995). Model-based computing: using concurrent constraint programming for modeling and model compilation. In (Montanari & Rossi, 1995). pages 629–635.Google Scholar
  57. Frühwirth, T. & Hanschke, P. (1994). Terminological Reasoning with Constraint Handling Rules, pages 361–384. In (Saraswat & Van Hentenryck, 1994).Google Scholar
  58. Gärdenfors, P. (1988). Knowledge in Flux. MIT Press.Google Scholar
  59. Gleicher, M. (1994). Practical Issues in Graphical Constraints. In (Saraswat & Van Hentenryck, 1994).Google Scholar
  60. Gloner, Y. (1994). A scheduling engine. COSYTEC SA, Parc Club Orsay Universite, 4, rue Jean Rostand, 91893 Orsay Cedex, France.Google Scholar
  61. Golomb, S.W. & Baumert, L.D. (1965). Backtrack programming. Journal of the ACM, 12:516–524.Google Scholar
  62. Gosselin, V. (1993). Train scheduling using constraint programming techniques. In Proc. 13th International Conference on Artificial Intelligence, Expert Systems and Natural Language, pages 401–413, Avignon. EC2, 269–287, rue de la Garenne, 92024 Nanterre, France.Google Scholar
  63. Gottlob, G. & Nejdl, W., editors. (1990). Expert Systems in Engineering, volume 462 of LNCS. Springer.Google Scholar
  64. Graf, T., van Hentenryck, P., Pradelles, C. & Zimmer, L. (1989). Simulation of hybrid circuits in constraint logic programming. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), pages 72–77, Detroit.Google Scholar
  65. Haralick, R.M. & Elliot, G.L. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14:263–314.Google Scholar
  66. Hart, P.E., Nilsson, N.J. & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Tansactions on Systems, Science and Cybernetics, 4(2).Google Scholar
  67. Helm, R., Huynh, T., Lassez, C. & Marriott, K. (1992). A linear constraints technology for user interfaces. In Graphics Interface, pages 301–309, Vancouver.Google Scholar
  68. Henz, M., Smolka, G. & Wuertz, J. (1995). Object-oriented concurrent constraint programming in oz. In Priniciples and Practice of Constraint Programming, pages 27–48. MIT Press.Google Scholar
  69. Hermosilla, L. & Kuper. G. (1996). Towards the definition of a spatial object-oriented data model with constraints. In (Kuper & Wallace, 1996).Google Scholar
  70. Chun, H.W. (1995). Solving check-in counter constraints with ILOG solver. In (ILOG Users, 1995).Google Scholar
  71. Hooker, J.N. & Yan, H. (1994). Verifying Logic Circuits by Benders Decomposition. In (Saraswat and Van Hentenryck, 1994).Google Scholar
  72. Hua, K., Faltings, B., Haroud, D. & Kimberley, G. (1990). Dynamic Constraint Satisfaction in a Bridge Design System, pages 217–232. (Gottlob & Nejdl, 1990).Google Scholar
  73. Hyvőnen, E. (1991). Interval constraint spreadsheets for financial planning. In Proc. First International Conference on Artificial Intelligence Applications on Wall Street. IEEE Computer Society Press.Google Scholar
  74. ILOG, (1995). ILOG SOLVER: Object-oriented constraint programming. ILOG SA, 12, Avenue Raspail, BP 7, 94251 Gentilly Cedex, France.Google Scholar
  75. ILOG, editor. (1995). Proceedings of the ILOG User-group meeting. ILOG, 1995. Also available from http://www.ilog.com/ilog/Products/Solver/Conference.Google Scholar
  76. Jaffar, J., Michayov, S., Stuckey, P.J. & Yap, R.H.C. (1992). The CLP(Te) language and system. ACM Transactions on Programming Languages and Systems, 14(3):339–395.Google Scholar
  77. Johnston, M. & Minton, S. (1994). Analyzing a Heuristic Strategy for Constraint-Satisfaction and Scheduling, In (Zweben & Fox, 1994), chapter 9, pages 257–289.Google Scholar
  78. Kay P.& Simonis, H. (1995). Building industrial CHIP applications from reuseable software components. In (Roth, 1995), pages 355–369.Google Scholar
  79. Kelly, A. D., Macdonald, A., Marriott, K., Sondergaard, H., Stuckey, P. & Yap, R. (1995). An optimizing compiler for CLP(R). In (Montanari & Rossi, 1995).Google Scholar
  80. Kondrak, G. & van Beek, P. (1995). A theoretical evaluation of selected backtracking algorithms. In C. Mellish, editor, IJCAI, pages 541–547, Montreal, Canada.Google Scholar
  81. Korf, R.E. (1988). Optimal path-finding algorithms. In Search in Artificial Intelligence, pages 223–267. Springer.Google Scholar
  82. Kuper, G. & Wallace, M. editors. (1996). Proc. 1st International CONTESSA Workshop on Constraint Databases and their Applications, volume 1034 of LNCS. Springer.Google Scholar
  83. Laurière, J.-L. (1978). A language and a program for stating and solving combinatorial problems. Artificial Intelligence, 10:29–127.Google Scholar
  84. Lawler, E.L. & Wood, D.E. (1966). Branch-and-bound methods: A survey. Operations Research, 14:699–719.Google Scholar
  85. Le Pape, C. (1994). Implementation of resource constraints in ILOG SCHEDULE. Intelligent Systems Engineering, 3(2).Google Scholar
  86. Lever, J. (1996). Resource reallocation: a preprocessing role for constraint programming. In A. Roth and M.G. Wallace, editors, Proc. Practical Applications of Constraint Technology, London.Google Scholar
  87. Little, J. & Darby-Dowman, K. (1995). The significance of constraint logic programming to operational research. Presented at APMOD'95.Google Scholar
  88. Loos, M. (1994). Optimized scheduling for the process industry. COSYTEC SA, Parc Club Orsay Universite, 4, rue Jean Rostand, 91893 Orsay Cedex, France.Google Scholar
  89. Mackworth, A.K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1):99–118.Google Scholar
  90. Maher, M.J. (1987). Logic semantics for a class of committed-choice programs. In Jean-Louis Lassez, editor, ICLP'87: Proceedings 4th International Conference on Logic Programming, pages 858–876, Melbourne. MIT Press.Google Scholar
  91. Maloney, J., Borning, A. & Freeman-Benson, B. (1989). Constraint technology for user interface construction in Thinglab II. In Proc. ACM OOPSLA, pages 381–388.Google Scholar
  92. Maruyama, F., Minoda, Y., Sawada, S. & Takizawa, Y. (1992). Constraint satisfaction and optimisation using nogood justifications. In Proc. 2nd Pacific Rim Conf. on AI.Google Scholar
  93. Meier, M. (1995).. Debugging constraint programs. In Proc. Principles and Practice of Constraint Programming CP'95. Springer.Google Scholar
  94. Menenez, F. & Barahona, P. (1994). An Incremental Hierarchical Constraint Solver, pages 291–318. In (Saraswat & Van Hentenryck, 1994).Google Scholar
  95. Mezzanatto, G., Foglino, M., Giordanengo, P., Apra, M. & Gullane, G. (1993). Using ai techniques to design and install electrical bundles. In Proc. 13th International Conf. on Artificial Intelligence, Expert Systems and Natural Language, Avignon, 1993. EC2, 269–287, rue de la Garenne, 92024 Nanterre, France.Google Scholar
  96. Minton, S., Johnston, M.D., Philips, A.B. & Laird, P. (1992). Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58.Google Scholar
  97. Mittal, S. & Frayman, F. (1989). Towards a generic model of configuration tasks. In Proc. 11th IJCAI, pages 1395–1401.Google Scholar
  98. Mohr, R. & Henderson. T.C. (1986). Arc and path consistency revisited. Artificial Intelligence, 28:225–233.Google Scholar
  99. Montanari, U. (1974). Networks of constraints: Fundamental properties and applications to picture processing. Information Science, 7(2):95–132.Google Scholar
  100. Montanari, U. & Rossi, F., editors. (1995). Proc Principles and Practice of Constraint Programming CP'95. Springer.Google Scholar
  101. Nadel, B. (1988). Tree Search and Arc Consistency in Constraint Satisfaction Algorithms, chapter 9 in L. Kanal and V. Kumar, editors, Search in Artificial Intelligence, Springer.Google Scholar
  102. Newell, A. & Simon, H.A. (1963). GPS, a program that simulates human thought. In E. Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279–293. New York: McGraw-Hill.Google Scholar
  103. Perrett, M. (1991). Using constraint logic programming techniques in container port planning. ICL Technical Journal, 7(3):537–545.Google Scholar
  104. Pountain, D. (1995). Constraint Logic Programming. In Byte, pages 159–160.Google Scholar
  105. Puget, J.-F. (1995). Applications of constraint programming. In (Montanari & Rossi, 1995), pages 647–650.Google Scholar
  106. Puget, J.-F. & Leconte, M. (1995). Beyond the black box: Constraints as objects. In Proc. ILPS, pages 513–527, Portland, Oregon. MIT Press.Google Scholar
  107. Rauzy, A. (1994). Notes on the design of an open boolean solver. In P. Van Hentenryck, editor, Proc. International Conference on Logic Programming ICLP'94'. MIT Press.Google Scholar
  108. Roth, A., editor. (1995). Proc. Third International Conference on the Practical Applications of Prolog, Paris.Google Scholar
  109. Sabin, D., Sabin, M., Russell, R. & Freuder, E. (1995). A constraint-based approach to diagnosing software problems in computer networks. In (Montanari & Rossi, 1995), pages 463–480.Google Scholar
  110. Sadeh, N. (1994). Micro-Opportunistic Scheduling, chapter 4. In (Zweben & Fox, 1994).Google Scholar
  111. Sannella, M. (1994). The Sky Blue Constraint Solver and Its Applications. MIT Press.Google Scholar
  112. Saraswat, V.A. (1992). The category of constraint systems is cartesian-closed. In Proc. Logic in Computer Science LICS'92. IEEE.Google Scholar
  113. Saraswat, V.A. & Van Hentenryck, P., editors. (1994). Principles and Practice of Constraint Programming. MIT Press.Google Scholar
  114. Saraswat, V.A., Jagadeesan, R. & Gupta, V. (1994). Programming in timed concurrent constraint languages. In B. Mayoh, E. Tyugu, and J.Penjaam, editors, Constraint Programming: Proceedings 1993 NATO ASI Parnu, Estonia, NATO Advanced Science Institute Series, pages 361–410. Springer-Verlag.Google Scholar
  115. Saraswat, V.A. (1993). Concurrent Constraint Programming. MIT Press.Google Scholar
  116. Saraswat, V.A., Rinard, M. & Panangaden, P. (1990). Semantic foundations of concurrent constraint programming. In POPL 91.Google Scholar
  117. Schulte, J.W. (1995). Solving industrial scheduling problems using genetic algorithms and simulation-based evaluation In H. Richards, editor, Improving Manufacturing Performance in a Distributed Enterprise: Advanced Systems and Tools, Edinburgh, pages 163–172,.Google Scholar
  118. Selman, B., Levesque, H. & Mitchell, D. (1992). A new method for solving hard satisfiability problems. In Proceedings of AAAI, pages 440–446.Google Scholar
  119. Simonis, H. (1995). Application development with the CHIP system. In (Kuper & Wallace, 1996).Google Scholar
  120. Simonis, H. & Dincbas, M. (1987). Using logic programming for fault diagnosis in digital circuits. In German Workshop on Artificial Intelligence (GWAI-87), pages 139–148, Geseke, W.Germany.Google Scholar
  121. Simonis, H., Nguyen, H.N. & Dincbas, M. (1988). Verification of digital circuits using CHIP. In G.J. Milne, editor, Proceedings of the IFIP WG 10.2 International Working Conference on the Fusion of Hardware Design and Verification, Glasgow, Scotland. IFIP, North-Holland.Google Scholar
  122. Smith, B., Brailsford, S., Hubbard, P.M. & Williams, H.P. (1995). The progressive party problem: Integer linear programming and constraint propagation compared. In Proc. APMOD, Brunel, London.Google Scholar
  123. Smith, S. (1994). OPIS: A Methodology and Architecture for Reactive Scheduling, pages 29–66 in (Zweben & Fox, 1994).Google Scholar
  124. Sussman, G.J. & Steele, G.L. (1980). CONSTRAINTS - a language for expressing almost-hierarchical descriptions. Artificial Intelligence, 14(1):1–39.Google Scholar
  125. Sutherland, I. (1963). A Man Machine Graphical Communication System. PhD thesis, Massachusetts Institute of Technology.Google Scholar
  126. Touraivane, (1995). Constraint programming and industrial applications. In U. Montanari and F. Rossi, editors, Proc. Principles and Practise of Constraints Programming, CP '95, pages 640–642. Springer Verlag.Google Scholar
  127. Tsang, J.P. (1990). Constraint Propagation Issues in Automated Design, pages 135–151 in (Gottlob and Nejdl).Google Scholar
  128. Ullman, J.D. (1989). Principles of Database and Knowledge-Base Systems, volume 2. Computer Science Press.Google Scholar
  129. Van Hentenryck, P. (1994). Scheduling and Packing in the Constraint Language cc(FD). In (Zweben & Fox, 1994), chapter 5.Google Scholar
  130. Van Hentenryck, P. (1995). Constraint solving for combinatorial search problems: A tutorial. In (Montanari & Ross, 1995), pages 564–587.Google Scholar
  131. Van Hentenryck, P., McAllester, D. & Kapur, D. (1995). Solving polynomial systems using a branch and prune approach. SIAM Journal on Numerical Analysis.Google Scholar
  132. Van Hentenryck, P., Saraswat, V. & Deville, Y. (1994). Design, implementation, and evaluation of the constraint language cc(FD). In A. Podelski, editor, Constraint Programming: Basics and Trends, pages 293–316. Springer.Google Scholar
  133. Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. Logic Programming Series. MIT Press, Cambridge, MA.Google Scholar
  134. Wallace, M.G. (1991). Compiling integrity checking into update procedures. In Proc. IJCAI, Sydney.Google Scholar
  135. Wallace, M.G. (1994). Applying constraints for scheduling. In B. Mayoh, E. Tyugu, and J.Penjaam, editors, Constraint Programming: Proceedings 1993 NATO ASI Parnu, Estonia, NATO Advanced Science Institute Series, pages 161–180. Springer-Verlag.Google Scholar
  136. Wallace, M.G. (1995). Constraints as a tool for distributed scheduling. In H. Richards, editor, Proc. International Conference on Improving Manufacturing Performance in the Distributed Enterprise: Advanced Systems and Tools, Edinburgh.Google Scholar
  137. Wallace, M.G., editor. (1995). Proc. Conf. on Practical Applications of Constraints Technology, Paris.Google Scholar
  138. Waltz, D.L. (1975). Generating semantic descriptions from drawings of scenes with shadows. In P. H. Winston, editor, The Psychology of Computer Vision. McGraw Hill.Google Scholar
  139. Wilson, M. & Borning, A. (1993). Hierarchical Constraint Logic Programming. Journal of Logic Programming, 16(3):277–318.Google Scholar
  140. Yokoo, M. (1994). Weak-commitment search for solving constraint satisfaction problems. In Proc. 12th National Conference on Artificial Intelligence, pages 313–318.Google Scholar
  141. Yokoo, M. (1995). Asynchronous weak-commitment search for solving distributed constraint satisfaction problems. In (Montanari & Rossi, 1995), pages 88–102.Google Scholar
  142. Yvars, P.-A. & Roussou, H. (1995). SARTRE: A computer aided design tool forrobotised production lines. In (ILOG Users, 1995).Google Scholar
  143. Zweben, M & Fox, M.S., editors. (1994). Intelligent Scheduling. Morgan Kaufmann.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Mark Wallace
    • 1
  1. 1.William Penney Laboratory, Imperial CollegeLondonUK

Personalised recommendations