Climatic Change

, Volume 18, Issue 1, pp 1–15 | Cite as

Planktonic dimethylsulfide and cloud albedo: An estimate of the feedback response

  • Jonathan A. Foley
  • Karl E. Taylor
  • Steven J. Ghan


Partial control of climate by the biosphere may be possible through a chain of processes that ultimately links marine plankton production of dimethylsulfide (DMS) with changes in cloud albedo (Charlson et al., 1987). Changes in cloud optical properties can have profound impacts on atmospheric radiation transfer and, hence, the surface environment. In this study, we have developed a simple model that incorporates empirically based parameterizations to account for the biological control of cloud droplet concentration in a first attempt to estimate the strength of the DMS-cloud albedo feedback mechanism. We find that the feedback reduces the global climatic response to imposed perturbations in solar insolation by less than 7%. Likewise, it modifies the strength of other feedbacks affecting surface insolation over oceans by roughly the same amount. This suggests that the DMS-cloud albedo mechanism will be unable to substantially reduce climate sensitivity, although these results should be confirmed with less idealized models when more is known about the net production of DMS by the marine biosphere and its relation to aerosol/cloud microphysics and climate.


Insolation Climate Sensitivity Climatic Response Cloud Droplet Dimethylsulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M. O.: 1986, in Buat-Mendard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, Kluwer Acad. Publ., Dordrecht, Holland, pp. 331–362.Google Scholar
  2. Bates, T. S., Charlson, R. J., and Gammon, R. H.: 1987, ‘Evidence for the Climatic Role of Marine Biogenic Sulfur’, Nature 329, 319–321.Google Scholar
  3. Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., Le Treut, H., Liang, Z.-X., Mitchell, J. F. B., Morcrette, J.-J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I.: 1989, ‘Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models’, Science 245, 513–516.Google Scholar
  4. Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: 1987, ‘Oceanic Phytoplankton, Atmospheric Sulfur, Cloud Albedo and Climate’, Nature 326, 655–661.Google Scholar
  5. Dacey, J. W. and Wakeham, S. G.: 1986, ‘Oceanic Dimethylsulfide: Production During Zooplankton Grazing on Phytoplankton’, Science 233, 1314–1316.Google Scholar
  6. Hansen, J. E. and Travis, L.: 1974, ‘Light Scattering in Planetary Atmospheres’, Space Sci. Rev. 16, 527–610.Google Scholar
  7. Hansen, J. E., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., and Lerner, J.: 1984, Climate Sensitivity: Analysis of Feedback Mechanisms', in J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity, Maurice Ewing Series (5), Amer. Geophys. Union, pp. 130–163.Google Scholar
  8. Lacis, A. A. and Hansen, J. E.: 1974, ‘A Parameterization for the Absorption of Solar Radiation in the Earth's Atmosphere’, J. Atmos. Sci. 31, 118–133.Google Scholar
  9. Legrand, M. R., Delmas, R. J., and Charlson, R. J.: 1988, ‘Climate Forcing Implications from Vostok Ice-Core Sulphate Data’, Nature 334, 418–420.Google Scholar
  10. Lovelock, J. E., Maggs, J., and Rasmussen, R. A.: 1972, ‘Atmospheric Dimethylsulfide and the Natural Sulfur Cycle’, Nature 237, 452–453.Google Scholar
  11. Mitchell, J. F. B., Senior, C. A., and Ingram, W. J.: 1989, ‘CO2 and Climate: A Missing Feedback?’, Nature 341, 132–134.Google Scholar
  12. Pruppacher, H. R. and Klett, J. D.: 1978, Microphysics of Clouds and Precipitation, Kluwer Acad. Publ., Dordrecht, Holland.Google Scholar
  13. Ramanathan, V, Lian, M. S., and Cess, R. D.: 1979, ‘Increased Atmospheric CO2: Zonal and Seasonal Estimates of the Effects on the Radiation Energy Balance and Surface Temperature’, J. Geophys. Res. 84, 4949–4958.Google Scholar
  14. Roeckner, E., 1988: ‘Negative or Positive Cloud Optical Depth Feedback?’, Nature 335, 304.Google Scholar
  15. Saigne, C. and Legrand, M.: 1987, ‘Measurements of Methanesulphonic Acid in Antarctic Ice’, Nature 330, 240–242.Google Scholar
  16. Schlesinger, M. E. and Mitchell, J. F. B.: 1987, ‘Climate Model Simulations of the Equilibrium Climatic Response to Increased Carbon Dioxide’, Rev. Geophys. 25, 760–798.Google Scholar
  17. Schlesinger, M. E.: 1988, ‘Quantitative Analysis of Feedbacks in Climate Model Simulations of CO2- Induced Warming’, in M. E. Schlesinger (ed.), Physically-Based Modelling and Simulation of Climate and Climate Change, NATO ASI, Vol. 243, Kluwer Acad. Publ., Dordrecht, pp. 653–735.Google Scholar
  18. Shaw, G. E.: 1983, ‘Bio-Controlled Thermostasis Involving the Sulfur Cycle’, Climatic Change 5, 297–303.Google Scholar
  19. Slingo, A.: 1989, ‘A GCM Parameterization for the Shortwave Radiative Properties of Water Clouds’, J. Atmos. Sci. 46, 1419–1427.Google Scholar
  20. Somerville, R. C. J., and Remer, L. A.: 1984, ‘Cloud Optical Thickness Feedbacks in the CO2 Climate Problem’, J. Geophys. Res. 89, 9668–9672.Google Scholar
  21. Stephens, G. L.: 1978, ‘Radiation Profiles in Extended Water Clouds II: Parameterization Schemes’, J. Atmos. Sci. 35, 2123–2131.Google Scholar
  22. Twomey, S.: 1977, ‘The Influence of Pollution on the Shortwave Albedo of Clouds’, J. Atmos. Sci. 34, 1149–1152.Google Scholar
  23. Wetherald, R. T. and Manabe, S.: 1986, ‘An Investigation of Cloud Cover Change in Response to Thermal Forcing’, Climatic Change 8, 5–24.Google Scholar
  24. Wetherald, R. T. and Manabe, S.: 1988, ‘Cloud Feedback Processes in a General Circulation Model’, J. Atmos. Sci. 45,1397–1415.Google Scholar
  25. Wilson, C. A. and Mitchell, J. F. B.: 1987, ‘A Doubled CO2 Climate Sensitivity Experiment With a Global Climate Model Including a Simple Ocean’, J. Geophys. Res. 92, 13315–13343.Google Scholar
  26. Wiscombe, W. J.: 1977, ‘The Delta-Eddington Approximation for a Vertically Inhomogeneous Atmosphere’, NCAR Tech. Note NCAR/TN-121+STR, 66 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Jonathan A. Foley
    • 1
  • Karl E. Taylor
    • 2
  • Steven J. Ghan
    • 2
  1. 1.University of Wisconsin - Madison, Center for Climatic ResearchMadisonU.S.A.
  2. 2.Atmospheric and Geophysical Sciences DivisionLawrence Livermore National LaboratoryLivermoreU.S.A.

Personalised recommendations