Climatic Change

, Volume 22, Issue 4, pp 293–303

Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures

  • Alan R. Townsend
  • Peter M. Vitousek
  • Elisabeth A. Holland
Article

Abstract

Results of a simple model of the effects of temperature on net ecosystem production call into question the argument that the large stocks of soil carbon and greater projected warming in the boreal and tu ndra regions of the world will

lead to rapid efflux of carbon from these biomes to the atmosphere. We show that low rates of carbon turnover in these regions and a relatively greater response of net primary production to changes in temperature may lead to carbon storage over some limited range of warming. In contrast, the high rates of soil respiration found in tropical ecosystems are highly sensitive to small changes in temperature, so that despite the less pronounced warming expected in equatorial regions, tropical soils are likely to release relatively large amounts of carbon to the atmosphere. Results for high-latitude biomes are highly sensitive to parameter values used, while the net efflux of carbon from the tropics appears robust.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J. D., Melillo, J. M., McClaugherty, C. A., and Eshleman, K. N.: 1989, ‘Nitrogen Saturation in Northern Forest Ecosystems-Hypotheses and Implications’, Bioscience 39, 378–386.Google Scholar
  2. Atjay, G. L., Ketner, P., and Duvigneaud, P.: 1979, ‘Terrestrial Primary Production and Phytomass’, in Bolin, B., Degens, E., Kempe, E, and Ketner, P. (eds.), The Global Carbon Cycle, SCOPE, 13, Wiley, Chichester, 129–182.Google Scholar
  3. Berendse, F., Berg, B., and Bosatta, E.: 1987, ‘The Effect of Lignin, and Nitrogen on the Decomposition of Litter in Nutrient-Poor Ecosystems: A Theoretical Approach’, Can. J. Bot. 65, 1116–1120.Google Scholar
  4. Berg, B.: 1984, ‘Decomposition of Root Litter and Some Factors Regulating the Process: Long-term Root Litter Decomposition in a Scots Pine Forest’, Soil Biol. Biochem. 16, 609–619.Google Scholar
  5. Berg, B.: 1985, ‘Temporal Variation of Litter Decomposition in Relation to Simulated Soil Climate Long-term Decomposition in a Scots Pine Forest. V’. Can. J. Bot. 63, 1008–1016.Google Scholar
  6. Bonan, G. B.: 1991, ‘Seasonal and Annual Carbon Fluxes in a Boreal Forest Landscape’, J. Geophys. Res. 96, 17329–17338.Google Scholar
  7. Brown, S. and Lugo, A. E.: 1982, ‘The Storage and Production of Organic Matter in Tropical Forests and Their Role in the Global Carbon Cycle’, Biotropica 14, 161–187.Google Scholar
  8. Cowling, J. E. and MacLean, Jr, S. F.: 1981, ‘Forest Floor Respiration in a Black Spruce Taiga Forest Ecosystem in Alaska’, Holarct. Ecol. 4, 229–237.Google Scholar
  9. Fetter, A. H. and Hay, R. K. M.: 1981, Environmental Physiology of Plants, Academic Press, London.Google Scholar
  10. Flanagan, P. W. and Van Cleve, K.: 1983, ‘Nutrient Cycling in Relation to Decomposition and Organic matter Quality in Taiga Ecosystems’, Can. J. For. Res. 13, 795–817.Google Scholar
  11. Fung, I. Y, Tucker, C. Y, and Prentice, K. C.: 1987, ‘Application of Advanced Very High Resolution Radiometer Vegetation Index to Study of Atmosphere-Biosphere Exchange of CO2’, J. Geophys. Res. 92 (D3), 2999–3015.Google Scholar
  12. Gates, D. M.: 1980, Biophysical Ecology, Springer-Verlag, New York.Google Scholar
  13. Gordon, A. M., Schlentner, R. E., and Van Cleve, K.: 1987, ‘Seasonal Patterns of Soil Respiration and CO2 Evolution Following Harvesting in the White Spruce Forests of Interior Alaska’, Can. J. For. Res. 17, 304–310.Google Scholar
  14. IGAC: 1990, Terrestrial Biosphere Exchange with Global Atmospheric Chemistry ..., IGBP report 13, Matson, P. A. and Ojima, D. S. (eds.), IGBP, Stockholm.Google Scholar
  15. IPCC: 1990, Climate Change: The IPCC Scientific Assessment, Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.Google Scholar
  16. Kittel, T. G. F., Schimel, D. S., Parton, W. J., Ojima, D. S., and Hunt, H. W.: ‘Regional Consequences of Climate Change and Doubled CO2 on Nutrient Cycling and Primary Productivity of the U.S. Great Plains’, Nature, submitted.Google Scholar
  17. Lieth, H.: 1975, ‘Modeling the Primary Productivity of the World’, in Lieth, H. and Whittaker, R. H. (eds.), Primary Productivity of the Biosphere, Springer Verlag, New York.Google Scholar
  18. Marston, J. B., Oppenheimer, M., Fujita, R. M., Gaffin, S. R.: 1991, ‘Carbon Dioxide and Temperature’, Nature 349, 573–574.Google Scholar
  19. Matson, P. A. and Vitousek, P. M.: 1990, ‘Ecosystem approaches for the Development of a Global Nitrous Oxide Budget’, Bioscience 40, 667–672.Google Scholar
  20. Medina, E. and Zelwer, M.: 1972, ‘Soil Respiration in Tropical Plant Communities’, in Golley, P. M. and Golley, F. B. (eds.), Papers from a symposium on tropical ecology with an emphasis on organic productivity, Univ. of Georgia, Athens, pp.245–269.Google Scholar
  21. Meentmeyer, V.: 1984, ‘The Geography of Organic Decomposition Rates’, Ann. Assoc. Amer. Geogr. 74, 551–560.Google Scholar
  22. Mooney, H. A., Vitousek, P. M., and Matson, P. A.: 1987, ‘Exchange of Materials between Terrestrial Ecosystems and the Atmosphere’, Science 238, 926–932.Google Scholar
  23. Parton, W. J., Schimel, D. S., Cole, C. V, and Ojima, D. S.: 1987, ‘Analysis of Factors Controlling Soils Organic Mailer Levels in the Great Plains Grasslands’, Soil Sci. Soc. Amer. J. 5l, 1173–1179.Google Scholar
  24. Pastor, J. and Post, W. M.: 1986, ‘Influence of Climate, Soil Moisture, and Succession on Forest Carbon and Nitrogen Cycles’, Biogeochemistry 2, 3–27.Google Scholar
  25. Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, A. G.: 1982, ‘Soil Carbon Pools and World Life Zones’, Nature 298,156–159.Google Scholar
  26. Prentice, K. C.: 1986, The Influence of the Terrestrial Biosphere on Seasonal Atmospheric Carbon Dioxide: An Empirical Model, Ph.D. thesis, Columbia University, New York City, New York.Google Scholar
  27. Raich, J. W. and Nadelhoffer, K. J.: 1989, ‘Belowground Carbon Allocation in Forest Ecosystems’, Ecology 70, 1346–1354.Google Scholar
  28. Raich, J. W. and Schlesinger, W. H.: ‘The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Climate’, Tellus, in press.Google Scholar
  29. Reiners, W. A.: 1968, ‘Carbon Dioxide Evolution from the Floor of Three Minnesota Foresls’, Ecology 49, 471–483.Google Scholar
  30. Schimel, D. S.: 1986, ‘Carbon and Nitrogen Turnover in Adjacenl Grassland and Cropland Ecosystems’, Biogeochemistry 2, 345–357.Google Scholar
  31. Schimel, D. S., Parton, W. J., Kittel, T. G. F., Ojima, D. S., and Cole, C. V: 1990, ‘Grassland Biogeochemistry: Links to Atmospheric Processes’, Clim. Change 17, 13–25.Google Scholar
  32. Schlentner, R. E. and Van Cleve, K.: 1985, ‘Relationships Belween CO2 Evolution from Soil, Substrate Temperature, and Substrate Moisture in Four Forest Types in Interior Alaska’, Can. J. For. Res. 15, 97–106.Google Scholar
  33. Schlesinger, W. H.: 1977, ‘Carbon Balance in Terrestrial Detritus’, Ann. Rev. Ecol. Syst. 8, 51–81.Google Scholar
  34. Schlesinger, W. H.: 1991, Biogeochemistry: An Analysis of Global Change, Academic Press, San Diego.Google Scholar
  35. Singh, J. S. and Gupta, S. R.: 1977, ‘Plant Decomposition and Soil Respiration in Terrestrial Ecosystems’, Botan. Rev. 43, 449–528.Google Scholar
  36. Stewart, J. M. and Wheatley, R. E., 1990, ‘Estimates of CO2 Production from Eroding Peat Surfaces’, Soil Biol. Biochem. 22 (1), 65–68.Google Scholar
  37. Svensson, B. H.: 1980, ‘Carbon Dioxide and Methane Fluxes from the Ombrotophic Paris of a Subarctic Mire’, Ecol. Bull. 30, 235–250.Google Scholar
  38. Svensson, B. H. and Rosswall, T.: 1980, ‘Energy Flow through a Subarctic Mire at Stordalen’, in Sonesson, M. (ed.), Ecology of a Subarctic Mire Ecol. Bull. (Stockholm) 30, 282–301.Google Scholar
  39. Trumbore, S. E., Bonani, G., and Wolfi, W.: 1990, ‘The Rates of Carbon Cycling in Several Soils from AMS 14C Measurements of Fractionated Soil Organic Matter’, in Bouwman, A. F. (ed.), Soils and the Greenhouse Effect, John Wiley and Sons, New York, pp. 405–414.Google Scholar
  40. Van Veen, J. A. and Paul, E. A.: 1981, ‘Organic Carbon Dynamics in Grassland Soils. 1. Background Information and Computer Simulations’, Can. J. Soil Sci. 61, 185–201.Google Scholar
  41. Vitousek, P. M. and Sanford, R. L.: 1986, ‘Nutrient Cycling in Moist Tropical Forests’, Ann. Rev. Ecol. Syst. 17, 137–167.Google Scholar
  42. Vitousek, P.M. and Howarth, R.: 1991, ‘Nitrogen Limitation in Terrestrial and Freshwater Ecosystems’, Oecologia, in press.Google Scholar
  43. Whittaker, R. H. and Likens, G. E.: 1975, ‘The Biosphere and Man’, in Lieth, H. and Whittaker, R. H. (eds.), Primary Productivity of the Biosphere, Springer Verlag, New York.Google Scholar
  44. Woodwell, G. M.: 1990, ‘The Effects of Global Warming’, in Leggett, J. (ed.), Global Warming, The Greenpeace Report, Oxford University Press, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Alan R. Townsend
    • 1
  • Peter M. Vitousek
    • 1
  • Elisabeth A. Holland
    • 2
  1. 1.Dept. Biological SciencesStanford UniversityStanfordU.S.A.
  2. 2.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderU.S.A.

Personalised recommendations