Advertisement

Earth, Moon, and Planets

, Volume 50, Issue 1, pp 343–388 | Cite as

Eastern Aphrodite Terra on Venus: Characteristics, structure, and mode of origin

  • L. S. Crumpler
Part 3 Regional Geology

Abstract

Eastern Aphrodite Terra and Western Aphrodite form an altimetrically prominent 14,000 km long part of the equatorial highlands on Venus. Several parallel linear discontinuities striking northwest across the general east-west regional strike of the highlands are mapped in the altimetric and radar image data of Eastern Aphrodite and identified on the basis of abrupt termination of rift-like central chasma, offset and segmentation of the center of the highlands, and radar image discontinuities in the lowlands to the north. These characteristics are similar to those of linear discontinuities previously mapped in Western Aphrodite in terms of length, orientation, and influence on the central highlands and adjacent lowlands.

Altimetric profiles in directions parallel to the discontinuities are regionally symmetric, more ridge-like in Eastern Aphrodite compared to the plateau-dominated form of topography in Western Aphrodite, and are characterized by alternating paired ridge-and-trough forms near their crests and on their flanks. By mapping the center of symmetry in multiple profiles, the prominent segmentation of the highland is shown to be imparted by an offset of the regional symmetry along the mapped discontinuities. These characteristics are morphologically similar to several of the large-scale characteristics of divergent plate boundaries of Earth, including mid-ocean rise crests and rifts, offset at fracture zones and transform faults, and symmetric thermal boundary layer topography.

The altitude of the surface in profiles parallel to the discontinuities decreases as the square root of distance from the symmetry axes and with a slope similar to that predicted for thermal boundary layer topography associated with rates of divergence on Venus of ~ 1 ± 0.5 cm/yr. In order to test the hypothesis that the linear discontinuities are analogous to fracture zones, the predicted altitude of the surface at great distance from the centers of symmetry of the central highland and in directions across the discontinuities was calculated on the basis of a thermal boundary layer topography model with offset of altimetric symmetry at each discontinuity. Similarity of observed Arecibo high-resolution altimetric profiles across the discontinuities with that calculated for thermal boundary layer topography offset by transform faults reveals that in terms of the sense and magnitude of regional steps in altimetry across discontinuities and the altitude of the surface, Eastern Aphrodite is similar to the known characteristics of crustal spreading at divergent boundaries. The plateau-like form of Western Aphrodite and the ridge-like form of Eastern Aphrodite are analogous respectively to the difference between areas of anomalous (Iceland) and normal crustal production along rise crests on Earth. Estimates of volumetric differences in crustal production in the environment of Venus and as it would be influenced by differences in mantle temperature beneath Western and Eastern Aphrodite imply that Eastern Aphrodite represents normal crustal production. On this basis, Western Aphrodite may be characterized by a mantle temperature that is warmer than the mantle beneath Eastern Aphrodite Terra, perhaps in association with deep convective mantle upwelling.

Keywords

Fracture Zone Radar Image Convective Mantle Central Highland Mantle Upwelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvidson, R. E., Plaut, J. J., Jurgens, R. F., Saunders, R. S., and Slade, M. A.: 1989, 'Geology of Southern Guinevere Planitia, Venus, Based on Analysis of Goldstone Radar Data', Lunar Planet. Sci. XX, 25.Google Scholar
  2. Barsukov, V. L., Borunov, S. P., Volkov, V., Dorofeyva, V. A., Zolotov, M. Yu, Parotkin, S. V., Semenov, Yu. V., Sidorov, Yu. I., Khodakovsky, I. L., and Shapkin, A. I.: 1986, 'Estimation of Mineral Composition of Soil at Landing Sites of Venera 13, 14, and Vega 2 Landers According to Thermodynamical Calculations', Doklady AN SSSR 287, 415.Google Scholar
  3. Basilevsky, A.T., and Surkov, Y. A.: 1989, 'Chemical Compositions of Venusian Rocks and Some Geochemical Implications', V-GRAM, 15, 2–4, Magellan Project-JPL.Google Scholar
  4. Basilevsky, A. T., Pronin, A. A., Ronca, L. B., Kryuchov, V. P., Sukhanov, A. L., and Markov, M. S.: 1986, 'Styles of Tectonic Deformation on Venus: Analysis of Venera 15 and 16 Data', Jour. Geophys. Res., 91, D399–411.Google Scholar
  5. Bindschadler, D. L., and Head, J. W.: 1986, 'VEGA Landing Sites: Venera 15/16 Unit Analogs from Pioneer Venus Reflectivity and RMS Slope Data', Geophys. Res. Lett. 13, 1415–1418.Google Scholar
  6. Bindshadler, D. L., and Head, J. W.: 1988a, 'Diffuse Scattering of Radar on the Surface of Venus: Origin and Implications for the Distribution of Soils', Earth, Moon, and Planets, 42, 133–149.Google Scholar
  7. Bindschadler, D. L., and Head, J. W.: 1988b, 'Models for the Origin of Tesserae Terrain on Venus', Lunar Planet Sci. XIX, 78–79.Google Scholar
  8. Bindschadler, D. L., and Head, J. W.: 1988c, 'Definition and Characterization of Subtypes of the Venus Tesserae', Lunar Planet Sci. XIX, 76–77.Google Scholar
  9. Bindschadler, D. L., Head, J. W., Kreslavsky, M. A., Shkurotov, Yu. G., and Basilevsky, A. T.: 1990, 'Distribution of Tesserae Terrain on Venus: Prediction for Magellan', Geophys. Res. Let., 17, 171–174.Google Scholar
  10. Black, M. T., Zuber, M. T., and McAdoo, D. C.: 1989, 'Comparison of Observed and Predicted Gravity Profiles over Aphrodite Terra', Venus, Lunar Planet. Sci. XX, 82–83.Google Scholar
  11. Bowin, C.: 1983, 'Gravity, Topography, and Crustal Evolution of Venus', Icarus, 56, 345–371.Google Scholar
  12. Bosworth, W.: 1989, 'Basin and Range Style Tectonics in East Africa', Jour. African Earth Sci. 8, 191–201.Google Scholar
  13. Campbell, D. B., Head, J. W., Hine, A. A., Harmon, J. K., Senske. D. A., and Fisher, P. C.: 1989, 'Styles of Volcanism on Venus: New Arecibo High Resolution Radar Data', Science, 246, 373–377.Google Scholar
  14. Campbell, D. B., Head, J. W., Harmon, J. K. and Hine, A. A.: 1984, 'Venus: Volcanism and Rift Formation in Beta Regio', Science, 226, 167–170.Google Scholar
  15. Carlson, R. N., Christiansen, N., and Moore, R.: 1980, 'Anomalous Crustal Structures in Ocean Basins: Continental Fragments and Oceanic Plateaus', Earth Planet. Sci. Lett. 51, 171–180.Google Scholar
  16. Crumpler, L. S., Head, J. W. and Harmon, J. K.: 1987, 'Regional Linear Cross-Strike Discontinuities in Western Aphrodite Terra', Geophys. Res. Lett., 14, 607–610.Google Scholar
  17. Crumpler, L. S., and Head, J. W.: 1988, 'Bilateral Symmetry Patterns Across Aphrodite Terra, Venus', J. Geophys. Res., 93, 301–312.Google Scholar
  18. Crumpler, L. S., and Head, J. W.: 1990, 'Spreading Center and Divergent Plate Boundary Characteristics in Western Aphrodite Terra, Venus: Further Analysis of Topography, Morphology, Symmetry, and Map Patterns', submitted to Tectonophysics, in press.Google Scholar
  19. Ehmann, W. J.: 1983, 'Aphrodite Terra, Venus: Characteristics and Geologic Provinces', M.S. thesis, Brown University.Google Scholar
  20. Garvin, J. B., and Bryan, W. B.: 1987, 'Venus Surface Compositions: Implications from Terrestrial Geochemical Analogies', Astron. Vestnik., 11, 122–135.Google Scholar
  21. Grimm, R. E., and Solomon, S. C.: 1989, 'Tests of Crustal Divergence Models for Aphrodite Terra, Venus', J. Geophys. Res., 94, 12, 103–12, 131.Google Scholar
  22. Hagfors, T.: 1970, 'Remote Probing of the Moon by Microwave and Infrared Emissions and Radar', Radio Sci. 5, 189–227.Google Scholar
  23. Hayes, D. E.: 1988, 'Age-Depth Relationships and Depth Anomalies in the Southeast Indian Ocean and South Atlantic Ocean', Jour. Geophys. Res. 93, 2937–2954.Google Scholar
  24. Head, J. W.: 1990, 'Venus Trough and Ridge Tessera: Analog to Earth Ocean Crust Formed at Spreading Centers?', Jour. Geophys. Res., 95, 7119–7132.Google Scholar
  25. Head, J. W., and Crumpler, L. S.: 1989, 'Divergent Plate Boundary Characteristics and Crustal Spreading in Aphrodite Terra, Venus: a Test of Some Predictions', Earth, Moon, and Planets, 44, 219–231.Google Scholar
  26. Head, J. W., and Crumpler, L. S.: 1987, 'Evidence for Divergent Plate Boundary Characteristics and Crustal Spreading on Venus', Science, 238, 1380–1385.Google Scholar
  27. Head, J. W., Garvin, J. B., Campbell, D. B., Pettengill, G. H., Masursky, H., Saunders, R. S., Barsukov, V. L., Basilvesky, A. T. and Surkov, Y. A.: 1987, 'Vega Landing Sites: Geological Characteristics of the Surrounding Region, Rusalka Planitia, Venus', Lunar Planet. Sci. XVII, 327–328.Google Scholar
  28. Head, J. W.: 1986, 'Venus Global Tectonics: Tectonic Style and Evidence for Latitudinal Distribution of Tectonic Features', Lunar Planet. Sci. XVII, 325–326.Google Scholar
  29. Head, J. W., Peterfreund, A. R. and Garvin, J. W.: 1985, 'Surface Characteristics of Venus Derived from Pioneer Venus Altimetry, Roughness, and Reflectivity Measurements', Jour. Geophys. Res., 90, 6873–6885.Google Scholar
  30. Herrick, R. R., Bills, B. G., and Hall, S. A.: 1989, 'Variations in Effective Compensation Depth across Aphrodite Terra, Venus', Geophys. Res. Lett., 16, 543–546.Google Scholar
  31. Hess, P. C., and Head, J. W.: 1989, 'Derivation of Primary Magmas and Melting of Crustal Materials on Venus: Some Preliminary Considerations', 28th International Geol. Congress Abstracts, 2, 55.Google Scholar
  32. Kaula, W. K., and Phillips, R. J.: 1981, 'Quantitative Tests for Plate Tectonics on Venus', Geophys. Res. Lett., 8, 1187–1190.Google Scholar
  33. Kiefer, W. S., and Hager: B. A., 1989, 'Mantle Plumes on Venus: A Model for the Equatorial Highlands and a Possible Connection with Ovoids', Lun. Planet. Sci. IX, 601–602.Google Scholar
  34. Kiefer, W. S., Richards, M. A., Hager, B. H. and Bills, B. G.: 1986, 'A Dynamic Model of Venus Gravity Field', Geophys. Res. Lett., 13, 14–17.Google Scholar
  35. Kondrat'yev, K. Y., Krupenio, N. N. and Selivanov, A. S.: 1987, The Planet Venus, (in Russian), Gidrometeoizdat Publishing, Leningrad, U.S.S.R., 277 pp.Google Scholar
  36. Kumar, N.: 1979, 'Origin of “Paired” Aseismic Rises: Ceara' and Sierra Leone Rises in the Equatorial, and the Rio Grande Rise and Walvis Ridge in the South Atlantic', Mar. Geol., 30, 175–191.Google Scholar
  37. Lewis, B. T. R.: 1979, 'Periodicities in Volcanism and Longitudinal Magma Flow on the East Pacific Rise at 23N', Geophys. Res. Lett., 6, 753–756.Google Scholar
  38. Macdonald, K. C.: 1982, 'Mid-Ocean Ridges: Fine Scale Tectonic, Volcanic and Hydrothermal Processes within the Plate Boundary Zone', Ann. Rev. Earth Planet. Sci. 10, 155–190.Google Scholar
  39. Mahoney, J. J.: 1987, 'An Isotopic Survey of Pacific Oceanic Plateaus: Implications for their Nature and Origin', in H. Keating, P. Fryer, R. Batiza, and G. W. Boehlert, (eds.), Seamounts, Islands, and Atolls, Geophys. Monogr. 43, Am. Geophys. Union, Washington, pp. 207–220.Google Scholar
  40. Malinverno, A.: 1990, 'A Quantitative Study of the Axial Topography of the Mid-Atlantic Ridge', Jour. Geophys. Res. 95, 2645–2660.Google Scholar
  41. Masursky, H., Eliason, E., Ford, P. G., McGill, G. E., Pettengill, G. H., Schaber, G. G. and Schubert G., 1980, 'Pioneer Venus Radar Results: Geology from Images and Altimetry', J. Geophys. Res., 85, 8232–8260.Google Scholar
  42. McGill, G. E., Steenstrup, S. J., Barton, C. and Ford, P. G.: 1981, 'Continental Rifting and the Origin of Beta Regio, Venus', Geophys. Res. Lett. 8, 737–740.Google Scholar
  43. McGill, G. E., Warner, J. L., Malin, M. C. Arvidson, R. E., Eliason, E., Nozette, S., and Reasenberg, R. D.: 1983, 'Topography, Surface Properties, and Tectonic Evolution', in D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz, (eds.), Venus, Univ. Arizona Press, Tucson: Chap. 6.Google Scholar
  44. Moores, E. M.: 1986, 'The Proterozoic Ophiolite Problem, Continental Emergence, and the Venus Connection', Science, 234, 65–68.Google Scholar
  45. Nur, A., and Ben-Avraham, Z.: 1982, 'Oceanic Plateaus, the Fragmentation of Continents, and Mountain Building', Jour. Geophys. Res., 87, 3644–3667.Google Scholar
  46. Parsons, B. and Sclater, J. G.: 1977, 'An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age', Jour. Geophys. Res., 82, 803–827.Google Scholar
  47. Pettengill, G. H., Eliason, E., Ford, P. G., Loriot, G. B., Masursky, H., and McGill, G. E.: 1980, 'Pioneer Venus Radar Results: Altimetry and Surface Properties', Jour. Geophys. Res., 85, 8261–8270.Google Scholar
  48. Pettengill, G. H., and Ford, P. G.: 1985, 'Pioneer Venus Altimetry Data'. NSSDC 78-051A-02D.Google Scholar
  49. Phillips, R. J., and Malin, M. C.: 1983, 'The Interior of Venus and Tectonic Implications', Chap. 10, In D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz, (eds.), Venus, Univ. Arizona Press, Tucson: 159–214.Google Scholar
  50. Phillips, R. J., Kaula, W. M., McGill, G. E., and Malin, M. C.: 1981, 'Tectonics and Evolution of Venus', Science, 212, 879–887.Google Scholar
  51. Pockalny, R. A., Detrick, R. S. and Fox, P. J.: 1986, 'Punctuated Magmatism and the Generation of Ridge Axis Topography along the Mid-Atlantic Ridge', Eos Trans. AGU 67, 1213.Google Scholar
  52. Rabinowitz, P. D., and Jung, W. Y.: 1986, 'Gravity Anomalies in the Western North Atlantic Ocean', in P. R. Vogt, and B. E. Tucholke, eds., The Geology of North America, volume M, The Western North Atlantic, Geol. Soc. America, Chapter 13.Google Scholar
  53. Reasenberg, R. D., Goldberg, Z. M., MacNeil, P. E., and Shapiro, I. I.: 1981, 'Venus Gravity: A High Resolution Map', Jour. Geophys. Res., 86, 7173–7179.Google Scholar
  54. Reid, I., and Jackson, H. R.: 1981, 'Oceanic Spreading Rate and Crustal Thickness', Mar. Geophys. Res., 5, 165–172.Google Scholar
  55. Sandwell, D. T., and MacKenzie, K. R., 'Geoid Height Versus Topography for Oceanic Plateaus and Swells', Jour. Geophys. Res., 94, 7403–7418.Google Scholar
  56. Saunders, R. S., Sjogren, W. L. and Trager, G. B.: 1988, 'Venus Equatorial Highlands: Systematic Longitudinal Trend in Compensation Mechanism', EOS 69, 1295.Google Scholar
  57. Schaber, G. G.: 1982, 'Venus: Limited Extension and Volcanism along Zones of Lithopsheric Weakness', Geophys. Res. Lett., 9, 499–502.Google Scholar
  58. Senske, D. A.: 1989, 'Geology of the Equatorial Region of Venus: A Comparison of Volcanic and Tectonic Styles between the Equatorial Region and Northern High Latitudes. M.S. Thesis, Brown University.Google Scholar
  59. Senske, D. A. and Head, J. W.: 1989, 'Venus Equatorial Geologic Units', Lunar Planet. Sci., XX, 986–987.Google Scholar
  60. Sjogren, W. L., Bills, B. G., Birkeland, P. W., Nottinger, N. A., Ritke, S. J., and Phillips, R. J.: 1983, 'Venus Gravity Anomalies and their Correlation with Topography', Jour. Geophys. Res., 88, 1119–1128Google Scholar
  61. Sotin, C., Senske, D. A., Head, J. W., and Parmentier, E. M.: 1989, 'Terrestrial Spreading Centers under Venus Conditions: Evaluation of a Crustal Spreading Model for Western Aphrodite Terra', Earth Planet. Sci. Lett., 95, 321–333.Google Scholar
  62. Stofan, E. R., Head, J. W., Campbell, D. B., Zisk, S. H., Bogomolov, A. F., Rzhiga, O. N., Basilevsky, A. T., and Armand, N.: 1989, 'Geology of a Rift Zone on Venus: Beta Regio and Devana Chasma', Geol. Soc. Am. Bulletin, 101, 143–156.Google Scholar
  63. Surkov, Y. A., Moskalyova, L. P., Shcheglov, O. P., Dudin, A. D., Kharyukova, V. P., Manelyan, O. S., and Smirnov, G. G.: 1986, 'Study of Composition of Venusian Rock in Northern Part of Aphrodite Terra by Vega 2 Lander', Pis'ma v AZH, 12, 66.Google Scholar
  64. Vogt, P. R.: 1979, 'Global Magmatic Episodes: New Evidence and Implications for Steady-State Mid-Ocean Ridge', Geology, 7, 93–98.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • L. S. Crumpler
    • 1
  1. 1.Department of Geological SciencesBrown UniversityProvidenceU.S.A.

Personalised recommendations