Advertisement

Climatic Change

, Volume 21, Issue 4, pp 429–433 | Cite as

The DMS-cloud albedo feedback effect: Greatly underestimated?

  • Sherwood B. Idso
Correspondence

Abstract

There are a number of ways by which the biosphere may counter any impetus for global warming that might be produced by the rising CO2 content of earth's atmosphere. Evidence for one of these phenomena, the DMS-cloud feedback effect, is discussed in light of recent claims that it is not of sufficient strength to be of much importance.

Keywords

Atmosphere Global Warming Feedback Effect Sufficient Strength Albedo Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. F., Farwell, S. O., Robinson, E., Pack, M. R., and Bamesberger, W. L.: 1981, ‘Biogenic Sulfur Source Strengths’, Environ. Sci. Tech. 15, 1493–1498.Google Scholar
  2. Andreae, M. O.: 1986, in Buat-Mendard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, Kluwer Academic Publishers, Dordrecht, Holland, pp. 331–362.Google Scholar
  3. Andreae, M. O. and Barnard, W. R.: 1984, ‘Exchange of Dimethyl Sulfide from Ocean to Atmosphere,’ Mar. Chem. 14, 267–279.Google Scholar
  4. Barnard, W. R., Andreae, M. O., Watkins, W. R., Bingemer, H., and Georgii, H.-W.: 1982, ‘The Flux of Dimethyl Sulfide from the Ocean to the Atmosphere’, J. Geophys. Res. 87, 8787–8793.Google Scholar
  5. Bates, T. S., Charlson, R. J., and Gammon, R. H.: 1987, ‘Evidence for the Climatic Role of Marine Biogenic Sulfur,’ Nature 329, 319–321.Google Scholar
  6. Burgermeister, S., Zimmerman, R. L., Georgii, H.-W., Bingemer, H. G., Kirst, G. O., Janssen, M., and Ernst, W.: 1990, ‘On the Biogenic Origin of Dimethylsulfide: Relation Between Chlorophyll, ATP, Organismic DMSP, Phythoplankton Species, and DMS Distribution in Atlantic Surface Water and Atmosphere’, J. Geophys. Res. 95, 20607–20615.Google Scholar
  7. Charlson, R. J., Langner, J., and Rodhe, H.: 1990, ‘Sulphate Aeorosol and Climate’, Nature 348, 22.Google Scholar
  8. CLIMAP Project Members: 1981, ‘Seasonal Reconstructions of the Earth's Surface at the Last Glacial Maximum’, in McIntyre, A. and Cline, R. (eds.), Map Charts Ser. MC 36, Geol. Soc. Amer., Boulder.Google Scholar
  9. DeAngelis, M., Barkov, N. I., and Petrov, V. N.: 1987, ‘Aerosol Concentrations over the Last Climate Cycle (160 kyr) from an Antarctic Ice Core’, Nature 325, 318–321.Google Scholar
  10. DeAngelis, M., Jouzel, J., Lorius, C., Merlivat, R., Petit, J.-R., and Raynaud, D.: 1984, ‘Ice Age Data for Climate Modelling from an Antarctic (Dome C) Ice Core’, in Berger, A. L. and Nicolis, C. (eds.), New Perspectives in Climate Modelling, Elsevier Science Publ., New York, pp. 23–45.Google Scholar
  11. Eppley, R. W.: 1972, ‘Temperature and Phytoplankton Growth in the Sea’, Fish. Bull. 70, 1063–1085.Google Scholar
  12. Erickson, D. J. III, Ghan, S. J., and Penner, J. E.: 1990, ‘Global Ocean-to-Atmosphere Dimethyl Sulfide Flux’, J. Geophys. Res. 95, 7543–7552.Google Scholar
  13. Foley, J. A., Taylor, K. E., and Ghan, S. J.: 1991, ‘Planktonic Dimethylsulfide and Cloud Albedo: An Estimate of the Feedback Response’, Climatic Change 18, 1–15.Google Scholar
  14. Gaudichet, A., DeAngelis, M., Lefever, R., Petit, J. R., Korotkevitch, Y. S., and Petrov, V. N.: 1988, ‘Mineralogy of Insoluble Particles in the Vostok Antarctic Ice Core Over the Last Climate Cycle (150 kyr)’, Geophys. Res. Lett. 15, 1471–1474.Google Scholar
  15. Gibson, J. A. E., Garrick, R. C., Burton, H. R., and McTaggart, A. R.,: 1989, ‘Dimethylsulfide Concentrations in the Oceans Close to the Antarctic Continent’, Geomicrobiol. J. 6, 179–184.Google Scholar
  16. Goldman, J. C. and Carpenter, E. J.: 1974, ‘A Kinetic Approach to the Effect of Temperature on Algal Growth,’ Limnol. Oceanogr. 19, 756–766.Google Scholar
  17. Hill, F. B., Aneja, V. P., and Felder, R. M.: 1978, ‘A Technique for Measurement of Biogenic Sulfur Emission Fluxes,’ Environ. Sci. Health 13, 199–225.Google Scholar
  18. Hofmann, D. J.: 1991, ‘Aircraft Sulfur Emissions,’ Nature 349, 659.Google Scholar
  19. Idso, S. B.: 1989, Carbon Dioxide and Global Change: Earth in Transition, IBR Press, Tempe, AZ.Google Scholar
  20. Idso, S. B.: 1990, ‘A Role for Soil Microbes in Moderating the Carbon Dioxide Greenhouse Effect’, Soil Sci. 149, 179–180.Google Scholar
  21. Idso, S. B. and Kimball, B. A.: 1991, ‘Effects of Two and a Half Years of Atmospheric CO2 Enrichment on the Root Density Distribution of Three-Year-Old Sour Orange Trees’, Agric. For. Meteorol. 55, 345–349.Google Scholar
  22. Idso, S. B., Kimball, B. A., and Allen, S. G.: 1991a, ‘CO2 Enrichment of Sour Orange Trees: 2.5 Years into a Long-Term Experiment,’ Plant Cell Environ., 14, 351–353.Google Scholar
  23. Idso, S. B., Kimball, B. A., and Allen, S. G.: 1991b, ‘Net Photosynthesis of Sour Orange Trees Maintained in Atmospheres of Ambient and Elevated CO2 Concentration’, Agric. For. Meteorol. 54, 95–101.Google Scholar
  24. Kimball, B. A.: 1983, ‘Carbon Dioxide and Agricultural Yield: An Assemblage and Analysis of 430 Prior Observations’, Agron. J. 75, 779–788.Google Scholar
  25. Legrand, M. R., Delmas, R. J., and Charlson, R. J.: 1988, ‘Climate Forcing Implications from Vostok Ice-Core Sulphate Data’, Nature 334, 418–420.Google Scholar
  26. Lovelock, J. E.: 1988, The Ages of Gaia: A Biography of Our Living Earth, Norton, New York.Google Scholar
  27. Lyle, M.: 1988, ‘Climatically Forced Organic Carbon Burial in Equatorial Atlantic and Pacific Oceans,’ Nature 335, 529–532.Google Scholar
  28. Lyle, M., Murray, D. W., Finney, B. P., Dymond, J., Robbins, J. M., and Brooksforce, K.: 1988, ‘The Record of Late Pleistocene Biogenic Sedimentation in the Eastern Tropical Pacific Ocean,’ Pale-Oceanogr. 3, 39–59.Google Scholar
  29. MacTaggart, D. L., Adams, D. F., and Farwell, S. O.: 1987, ‘Measurement of Biogenic Sulfur Emissions from Soils and Vegetation Using Dynamic Enclosure Methods: Total Sulfur Gas Emissions Via MFC/FD/FPD Determinations’, J. Atmos. Chem. 5, 417–437.Google Scholar
  30. Martin, J. H. and Fitzwater, S. E.: 1988, ‘Iron Deficiency Limits Phytoplanktonic Growth in the NorthEast Pacific Subarctic’, Nature 331, 341–343.Google Scholar
  31. Morris, R. J., McCartney, M. J., and Weaver, P. P. E.: 1984, ‘Sapropelic Deposits in a Sediment from the Guinea Basin, South Atlantic’, Nature 309, 611–614.Google Scholar
  32. Muller, P. J., Erlenkeuser, H., and von Grafenstein, R.: 1983, ‘Glacial-Interglacial Cycles in Oceanic Productivity Inferred from Organic Carbon Contents in Eastern North Atlantic Sediment Cores’, in Thiede, J. and Suess, E. (eds.), Coastal Upwelling: Its Sediment Record. Part B: Sedimentary Records of Ancient Coastal Upwelling, Plenum Press, New York, NY, pp. 365–389.Google Scholar
  33. Parkin, D. W. and Shackleton, N. J.: 1973, ‘Trade Wind and Temperature Correlations Down a DeepSea Core off the Sahara Coast’, Nature 245, 455–457.Google Scholar
  34. Pedersen, T. F.: 1983, ‘Increased Productivity in the Eastern Equatorial Pacific During The Last Glacial Maximum (19 000 to 14 000 yr B.P.)’, Geology 11, 16–19.Google Scholar
  35. Petit, J.-R., Briat, M., and Royer, A.: 1981, ‘Ice Age Aerosol Content from East Antarctic Ice Core Samples and Past Wind Strength’, Nature 293, 391–394.Google Scholar
  36. Rhea, G.-Y. and Gotham, I. J.: 1981, ‘The Effect of Environmental Factors on Phytoplankton Growth: Temperature and the Interactions of Temperature with Nutrient Limitation’, Limnol Oceanogr. 26, 635–648.Google Scholar
  37. Saigne, C. and Legrand, M.: 1987, ‘Measurement of Methanesulphonic Acid in Antarctic Ice’, Nature 330, 240–242.Google Scholar
  38. Sarnthein, M., Tetzlaff, G., Koopman, B., Walter, K., and Pflaumann, U.: 1981, ‘Glacial and Interglacial Wind Regimes Over the East Subtropical Atlantic and N.W. Africa’, Nature 293, 193–196.Google Scholar
  39. Staubes, R., Georgii, H.-W., and Ockelmann, G.: 1989, ‘Flux of COS, DMS and CS2 from Various Soils in Germany’, Tellus 41B, 305–313.Google Scholar
  40. Thompson, A. E., Esaias, W. E., and Iverson, R. L.: 1990, ‘Two Approaches to Determining the Seato-Air Flux of Dimethyl Sulfide: Satellite Ocean Color and a Photochemical Model with Atmospheric Measurements’, J. Geophys. Res. 95, 20551–20558.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Sherwood B. Idso
    • 1
  1. 1.U.S. Water Conservation LaboratoryPhoenixUSA

Personalised recommendations