Climatic Change

, Volume 13, Issue 2, pp 161–189

Arctic aerosol and Arctic climate: Results from an energy budget model

  • John Harte
  • Jim Williams
Article

Abstract

An energy budget model is used to study the effect on Arctic climate of optically active aerosol in the Arctic atmosphere. The dependence of the change in surface temperature on the vertical distribution of the aerosol and on the radiative properties of the aerosol-free atmosphere, the Arctic surface, and the aerosol, itself, are calculated. An extensive sensitivity analysis is performed to assess the degree to which the results of the model are dependent upon the assumptions underlying it.

List of Symbols Used

I0

Solar flux at the top of the Arctic Atmosphere (‘Arctic’ here means 70° N latitude to the pole)

aS

Surface albedo of the Arctic (aSc is the value of surface albedo at which the sign of the surface temperature perturbation changes)

ϱ

Reflection coefficient of the aerosol-free Arctic atmosphere

α

Absorption coefficient of the aerosol-free Arctic atmosphere

τ

Transmission coefficient of the aerosol-free Arctic atmosphere

RI0

Total flux of sunlight reflected from the Arctic

AAI0

Total flux of sunlight absorbed in the Arctic atmosphere

ASI0

Total flux of sunlight absorbed at the Arctic surface

AaerI0

Total flux of sunlight absorbed in the Arctic aerosol

QA

Net atmospheric flow of energy, per unit of Arctic surface area, north across 70° N latitude

QS

Net oceanic flow of energy, per unit of Arctic surface area, north across 70° N latitude

E

Convective plus latent heat fluxes from surface to atmosphere

FA

Net flow of energy to the Arctic atmosphere

FS

Net flow of energy to the Arctic surface

TA

An effective temperature of the Arctic atmosphere

TS

Surface temperature of the Arctic

w

Single-scattering albedo of the aerosol

t

Optical depth of the aerosol

g

Fraction of incident radiation scattered forward by the aerosol

ϱ′

Reflection coefficient of the aerosol

α′

Absorption coefficient of the aerosol

τ′

Transmission coefficient of the aerosol

p,q

Number of atmospheric layers and the inverse of the fraction of incident IR absorbed in each layer in the energy budget model

F,G,H

Measures of the amount of IR-active atmosphere above the surface, the aerosol, and the clouds

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, T. and Valero, F.: 1984, ‘The Vertical Structure of Arctic Haze as Determined from Airborne Net-Flux Radiometer Measurements’, Geophys. Res. Lett. 11, 469–472.Google Scholar
  2. Ackerman, T., Stenback, J., and Valero, F: 1985, The Importance of Arctic Haze for the Energy Budget of the Arctic, in Stonehouse, B. (ed.), Symposium Volume: Arctic Air Pollution, Cambridge University Press.Google Scholar
  3. Barrie, L., Hoff, R., and Daggupaty, S.: 1981, ‘The Influence of Mid-latitudinal Pollution Sources on the Haze in the Canadian Arctic’, Atmos. Environ. 15, 1407–1419.Google Scholar
  4. Barrie, L. and Hoff, R.: 1985, ‘Five Years of Air Chemistry Observations in the Canadian Arctic’, Atmos. Environ. 19 (12), 1995–2010.Google Scholar
  5. Blanchet, J-P. and List, R.: 1983, ‘Estimation of Optical Properties of Arctic Haze Using a Numerical Model’, Atmosphere-Ocean 21 (4), 444–465.Google Scholar
  6. Bodhaine, B., Harris, J., and Herbert, G.: 1981, ‘Aerosol Light Scattering and Condensation Nuclei Measurements at Barrow, Alaska’, Atmos. Environ. 15, 1375–1390.Google Scholar
  7. Budyko, M.: 1977, Climatic Changes, Am. Geophys. Union, Washington, D.C.Google Scholar
  8. Cess, R.: 1983, ‘Arctic Aerosols: Model Estimates of Interactive Influences upon the Surfaceatmosphere Clear-sky Radiation Budget’, Atmos. Environ. 17, 2555–2564.Google Scholar
  9. Chylek, P. and Coakley, J.: 1975, ‘Man-Made Aerosols and the Heating of the Atmosphere over Polar Regions’, in G. Weller and S. A. Bowling (eds.), Climate of the Arctic, Geophys. Inst, U. of Alaska, Fairbanks, pp. 159–165.Google Scholar
  10. Clarke, A. and Noone, K.: 1985, ‘Soot in the Arctic Snowpack: a Cause for Perturbations in Radiative Transfer’, Atmos. Environ. 19 (12), 2045–2054.Google Scholar
  11. Dutton, E.G., DeLuisi, J. J., and Bodhaine, B.D.: 1984, ‘Features of Aerosol Optical Depth Observed at Barrow’, March 10–20, 1983, Geophys. Res. Lett. 11 (5), 385–388.Google Scholar
  12. Goody, R. M. and Walker, J. C. G.: 1972, Atmospheres, Prentice Hall, Englewood Cliffs, NJ, U.S.A.Google Scholar
  13. Grant, I. and Hunt, G.: 1969, ‘Discrete Space Theory of Radiative Transfer: I. Fundamentals’, Proc. Roy. Soc. London A313, 183–205.Google Scholar
  14. Hansen, A. and Rosen, H.: 1984, ‘Vertical Distributions of Particulate Carbon, Sulfur, and Bromine in the Alaskan Haze and Comparison with Groundlevel Measurements at Barrow, Alaska’, Geophys. Res. Lett. 11, 381–384.Google Scholar
  15. Heintzenberg, J.: 1982, ‘Size-Segregated Measurements of Particle Elemental Carbon and Light Absorption at Remote Arctic Locations’, Atmos. Environ. 16, 2461–2469.Google Scholar
  16. Holmgren, B., Shaw, G., and Weller, G.: 1974, ‘Turbidity in the Arctic Atmosphere’, AIDJEX Bulletin 27, 135–148.Google Scholar
  17. Kellogg, W.: 1975, ‘Climate Feedback Mechanisms Involving the Polar Regions’, in G. Weller and S. A. Bowling (eds.), Climate of the Arctic, Geophys. Inst., U. of Alaska, Fairbanks, pp. 111–116.Google Scholar
  18. MacCracken, M. C., Cess, R. D., and Potter, G. L.: 1986, ‘Climatic Effects of Anthropogenic Arctic Aerosols: An Illustration of Climate Feedback Mechanisms with One and Two-Dimensional Climate Models’, J. Geophys. Res. 91 (D13), 14,445–14,450.Google Scholar
  19. Mitchell, J.: 1957, ‘Visual Range in the Polar Regions with Particular Reference to the Alaskan Arctic’, J Atmos. Terr. Phys. Spec. Supp., 195–211.Google Scholar
  20. Mitchell, J.: 1971, ‘The Effect of Atmospheric Aerosols on Climate with Special Reference to Temperature near the Earth's Surface’, J. Appl. Meteorol. 10 (4), 703–714.Google Scholar
  21. Oort, A. H.: 1983, Global Atmospheric Circulation Statistics, 1953–1973, National Oceanic and Atmospheric Administration Professional Paper 14, U.S. Govt. Printing Office, Washington, DC, U.S.A.Google Scholar
  22. Porch, W. and MacCracken, M. C.: 1982, Parametric Study of the Effects of Arctic Soot on Solar Radiation, Atmos. Environ. 16, 1366–1371.Google Scholar
  23. Raatz, W., Schnell, R., Bodhaine, B., and Oltmans, S.: 1985, ‘Observations of Arctic Haze during Polar Flights from Alaska to Norway’, Atmos. Environ. 19 (2), 2143–2152.Google Scholar
  24. Rahn, K. and McCaffrey, R.: 1980, ‘On the Origin and Transport of the Winter Arctic Aerosol’, in: T. Kneip and P. Liov (eds.), Aerosols: Anthropogenic and Natural Sources and Sinks, Ann. N. Y. Acad. Sci. 338, 486–503.Google Scholar
  25. Rosen, H., Novakov, T., and Bodhaine, B.: 1981, ‘Soot in the Arctic’, Atmos. Environ. 15, 1371–1374.Google Scholar
  26. Rosen, H. and Novakov, T.: 1983, 'Combustion-Generated Carbon Particles in the Arctic Atmosphere, Nature 306, 768–770.Google Scholar
  27. Rosen, H. and Hansen, A.: 1984, ‘Role of Combustion-Generated Carbon Particles in the Absorption of Solar Radiation in the Arctic Haze’, Geophys. Res. Lett. 11, 461–464.Google Scholar
  28. Schneider, S.: 1975, ‘Surface Temperature-Albedo Coupling: Implications for Climate Stability’, in G. Weller and S. A. Bowling (eds.), Climate of the Arctic, Geophys. Inst., U. of Alaska, Fairbanks, pp. 166–171.Google Scholar
  29. Shaw, G.: 1975, ‘The Vertical Distribution of Atmospheric Aerosols at Barrow’, Alaska, Tellus 27, 39–50.Google Scholar
  30. Shaw, G. and Stamnes, K.: 1980, ‘Arctic Haze: Perturbation of the Polar Radiation Budget’, in T. Kneip and P. Liov (eds.), Aerosols: Anthropogenic and Natural Sources and Sinks, Ann. N.Y. Acad. Sci. 338, 533–539.Google Scholar
  31. Shaw, G.: 1984, ‘Atmospheric Turbidity in the Polar Regions’, J. Appl. Meteorol. 21, 1080–1088.Google Scholar
  32. Shaw, G.: 1985, ‘On the Climate Relevancy of Arctic Haze: Static Energy Balance Considerations’, Tellus 37B(1).Google Scholar
  33. Stephens, G., Campbell, G., and Von der Haar, T.: 1981, ‘Earth Radiation Budgets’, J. Geophys. Res. 86, 9739–9760.Google Scholar
  34. Twomey, S.: 1977, Atmospheric Aerosols, Elsevier Scientific Publ. Co., Amsterdam.Google Scholar
  35. Valero, F., Ackerman, T., and Gore, W.: 1983, ‘Radiative Effects of the Arctic Haze’, Geophys. Res. Lett. 10, 1184–1187.Google Scholar
  36. Valero, F., Ackerman, T., and Gore, W.: 1984, ‘The Absorption of Solar Radiation by the Arctic Atmosphere during the Haze Season and its Effects on the Radiation Balance’, Geophys. Res. Lett. 11, 465–468.Google Scholar
  37. Wendling, P., Wendling, R., Rneger, W., Covert, D., Heintzenberg, J., and Moerl, P.: 1985, ‘Calculated Radiative Effects of Arctic Haze during a Pollution Episode in Spring 1983 Based on Ground-Based and Airborne Measurements’, Atmos. Environ. 19 (2), 2181–2194.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • John Harte
    • 1
  • Jim Williams
    • 1
  1. 1.Energy and Resources Group, University of CaliforniaBerkeleyU.S.A.

Personalised recommendations