Documenta Ophthalmologica

, Volume 66, Issue 2, pp 171–185

The effect of a moderate level of hypoxia on human color vision

  • Algis J. Vingrys
  • Leon F. Garner
Article

Abstract

This study reports the effect of a moderate level of hypoxia on human color discimination. We found a generalized loss of color vision affecting both red-green and blue-yellow discrimination at an altitude of 12,000 feet. Although the residual color discrimination at this altitude was within age-matched, sea-level norms, a statistically significant increase over sea level error scores was measured on the Farnsworth-Munsell 100-Hue test and the Pickford-Nicolson anomaloscope. An analysis of psychophysical and electrophysiological studies indicates that hypoxia acts by depressing retinal ganglion cell activity and that it can affect photopic visual processes as well as scotopic vision. We conclude that studies evaluating man's visual performance at altitude must consider post-receptoral processes.

Key words

color vision color discrimination hypoxia color vision testing aviation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailley IL, Lovie JE. New design principles for visual acuity letter charts. Am J Optom 1976; 53: 740–745.Google Scholar
  2. 2.
    Birch J, Chisholm A, Kinnear P, Pinckers AJLG, Pokorny J, Smith VC, Verriest G. Clinical testing methods. In: Pokorny J, Smith VC, Verriest G, Pinckers AJLG eds. Congenital and acquired color vision defects. New York: Grune and Stratton, 1979a.Google Scholar
  3. 3.
    Birch J, Chisholm A, Kinnear P, Marre M, Pinckers AJLG, Pokorny J, Smith VC, Verriest G. Acquired color vision defects. In: Pokorny J, Smith VC, Verriest G, Pinckers AJLG eds. Congenital and acquired color vision defects. New York: Grune and Stratton, 1979b.Google Scholar
  4. 4.
    Bowman KJ, Cole BL. A recommendation for illumination of the Farnsworth-Munsell 100-Hue test. Am J Optom 1980; 57: 839–843.Google Scholar
  5. 5.
    Bowman KJ, Cameron KD. A quantitative assessment of colour discrimination in normal vision and senile macular degeneration using some color confusion tests. In: Verriest G, ed. Colour Vision Deficiencies 7. The Hague: Dr W. Junk Publishers, 1984.Google Scholar
  6. 6.
    Brown KT, Murakami M. A new receptor potential of the monkey retina with no detectable latency. Nature 1964; 201: 626–628.Google Scholar
  7. 7.
    Brown KT, Watanabe K, Murakami M. Early and late receptor potentials of monkey cones and rods. Cold Spring Harb Symp quant Biol 1965; 30: 457–482.Google Scholar
  8. 8.
    Burde RM, Savino PJ, Trobe JD. Clinical decision in neuroopthalmology. CV Mosby Co: St. Louis, 1985.Google Scholar
  9. 9.
    Derrington AM, Krauskopf J, Lennie P. Cromatic mechanisms in lateral geniculate nucleus of Macaque. J Physiol 1984; 357: 241–265.Google Scholar
  10. 10.
    De Valois RL, Snodderly DM, Yund EW, Helper NK. Responses of Macaque lateral geniculate cells to luminance and color figures. Vision Res 1977; 17: 244–259.Google Scholar
  11. 11.
    Ernest JT, Krill AE. The effect of hypoxia on visual function; Psychophysical studies. Invest Ophthalmol Vis Sci 1971; 10: 323–328.Google Scholar
  12. 12.
    Ernsting J. The effects of anoxia on the central nervous system. In: Gillies JA, ed. A Textbook of aviation physiology. Oxford: Pergamon Press, 1965.Google Scholar
  13. 13.
    Guth SL, Lodge HR. Heterochromatic additivity, foveal spectral sensitivity and a new color model. J Opt Soc Amer 1973; 63: 450–462.Google Scholar
  14. 14.
    Heath D, Williams DR. Man at high altitude. The pathophysiology of acclimatization and adaption. Churchill Livingstone, Edinburgh: 1981.Google Scholar
  15. 15.
    Hecht S, Hendley CD, Frank SR, Haig C. Anoxia and brightness discrimination. J Gen Physiol 1946; 29: 335–351.Google Scholar
  16. 16.
    Helve J. A comparative study of several diagnostic tests of colour vision used for measuring types and degrees of congenital red-green defects. Acta Ophthalmol Suppl 1972; 115: 1–64.Google Scholar
  17. 17.
    Hubel DH, Wiesel TN. Receptive fields of optic nerve fibers in the retina of the spider monkey. J Physiol 1960; 154: 572–580.Google Scholar
  18. 18.
    Hurvich LM, Jameson D. An opponent-process theory of color. Psychol Rev 64: 384–404.Google Scholar
  19. 19.
    Ingling CR. Luminance and opponent color contributions to visual detection and to temporal and spatial integration: comment. J Opt Sco Am 1978; 68: 1143–1146.Google Scholar
  20. 20.
    Kobrick JL, Zwick H, Witt CE, Devine JA. Effects of extended hypoxia on night vision. Aviat Space Environ Med 1984; 55: 191–195.Google Scholar
  21. 21.
    King-Smith PE, Carden D. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. J Opt Soc Am 1976; 66: 709–717.Google Scholar
  22. 22.
    King-Smith PE, Lubow M, Benes SC. Selective damage to chromatic mechanisms in neuro-opthalmic diseases I. Review of pubished evidence. Doc Ophthalmol 1984; 58: 241–250.Google Scholar
  23. 23.
    Lacey JA, Jacobs RJ. The macular photostress test. Aust J Optom 1983; 66: 147–150.Google Scholar
  24. 24.
    Lakowski R. Calibration, validation and population norms for the Pickford-Nicholson anomaloscope. Brit J Physiol Optics 1971; 26: 166–182.Google Scholar
  25. 25.
    Lakowski R. The Pickford-Nicholson anomaloscope as a test for acquired dyschromatopsias. Mod Prob Ophthalmol 1972; 11: 25–33.Google Scholar
  26. 26.
    Lakowski R, Aspinall PA. Transformation of arbitrary anomaloscope data to the C.I.E. system of specifications. Optica Acta 1972; 19: 399–402.Google Scholar
  27. 27.
    Lakowski R, Drance SM. Acquired dyschromatopsias the earliest functional losses in glaucoma. Docum Ophthalmol Proc Series 1979; 19: 159–165.Google Scholar
  28. 28.
    McFarland RA. Experimental evidence of the relationship between ageing and oxygen want: In search of a theory of ageing. Ergonomics 1963; 6: 339–366.Google Scholar
  29. 29.
    McFarland RA. The effects of altitude on pilot performance. In: Hannisdahl B, Sem-Jacobsen CW, eds. Aviation and Space Medicine. Denmark: Universitetsforlaget, 1969.Google Scholar
  30. 30.
    McFarland RA. Human factors in relation to the development of pressurized cabins. Aerospace Med 1971; 42: 1303–1318.Google Scholar
  31. 31.
    McFarland RA, Halperin MH. The relation between foveal visual acuity and illumination under reduced oxygen tension. J Gen Physiol 1940; 23: 613–630.Google Scholar
  32. 32.
    McFarland RA, Evans JN, Halperin MH. Ophthalmic aspects of acute oxygen deficiency. Arch Ophthalmol 1941; 26: 886–913.Google Scholar
  33. 33.
    Noell W, Chinn HI. Failure of the visual pathway during anoxia. Amer J Physiol 1950; 161: 573–590.Google Scholar
  34. 34.
    Ohlbaum MK. The effects of hypoxia on certain aspects of visual performance. Am J Optom 1969; 46: 235–249.Google Scholar
  35. 35.
    Pickford RW. A practical anomaloscope for testing colour vision and colour blindness. Brit J Physiol Opt 1957; 14: 2–26.Google Scholar
  36. 36.
    Schmidt I. Der gegenwartige Stand unserer Kenntnisse von den Storungen des Farbensinns und die Farbensinnprufungen bei der Luftfahrt (unter Berucksichtigung des Auslandes). Luftfahrtmedizin 1937; 2: 55–68.Google Scholar
  37. 37.
    Schmidt I, Bingel AGA. Effect of oxygen deficiency and various other factors on color saturation thresholds. U.S.A.F. School of Aviation Medicine Medical Report, Project No. 21–31–022. School of Aviation Medicine, Randolph Field, TX, USA, 1953.Google Scholar
  38. 38.
    Smith VC, Ernest TJ, Pokorny J. Effect of hypoxia on FM100-Hue test performance. Mod Probl Ophthalmol 1976; 17: 248–256.Google Scholar
  39. 39.
    Smith VC, Pokorny J, Pass AS. Color-axis determination on the Farnsworth-Munsell 100-Hue test. Am J Ophthalmol 1985; 100: 176–182.Google Scholar
  40. 40.
    Strongman E. Colour flight deck displays. Paper presented at Royal Aeronautical Society Flight Simulation Conference. RAE Bedford: April 6–7, 1982.Google Scholar
  41. 41.
    Verriest G, van Laethem J, Uvijls A. A new assessment of the normal ranges of the Farnsworth-Munsell 100-Hue test scores. Am J Ophthalmol 1982; 93: 635–642.Google Scholar
  42. 42.
    Wald G, Harper PV, Goodman HC, Krieger HP. Respiratory effects upon the visual threshold. J Gen Physiol 1942; 25: 891–903.Google Scholar
  43. 43.
    Whiteside TCD. The problems of vision in flight at high altitude. London: Butterworths, 1957.Google Scholar
  44. 44.
    Willmer WH, Berens C. The effect of altitude on ocular functions. JAMA, 1918; 71: 1394–1398.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1987

Authors and Affiliations

  • Algis J. Vingrys
    • 1
  • Leon F. Garner
    • 1
  1. 1.Department of OptometryThe University of MelbourneParkvilleAustralia
  2. 2.Department of OptometryThe University of MelbourneParkvilleAustralia

Personalised recommendations