Boundary-Layer Meteorology

, Volume 40, Issue 1–2, pp 179–197 | Cite as

A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies

  • William Massman
Article

Abstract

A semi-analytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and Stegun, I. A. (eds.): 1964, Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Ser., No. 55, Washington, D.C., 1046 pp.Google Scholar
  2. Albini, F. A.: 1981, ‘A Phenomenological Model for Wind Speed and Shear Stress Profiles in Vegetation Cover Layers’, J. Appl. Meteorol. 20, 1325–1335.Google Scholar
  3. Cionco, R. M.: 1965, ‘A Mathematical Model for Air Flow in a Vegetative Cover’, J. Appl. Meteorol. 4, 517–522.Google Scholar
  4. Cionco, R. M.: 1978, ‘Analysis of Canopy Index Values for Various Canopy Densities’, Boundary-Layer Meteorol. 15, 81–93.Google Scholar
  5. Cowan, I. R.: 1968, ‘Mass, Heat and Momentum Exchange Between Stands of Plants and Their Atmospheric Environment’, Quart. J. Roy. Meteorol. Soc. 94, 523–544.Google Scholar
  6. den Hartog, G. and Shaw, R. H.: 1975, ‘A Field Study of Atmospheric Exchange Processes within a Vegetative Canopy’, in D. A. DeVries and N. H. Afgan (eds.), Heat and Mass Transfer in the Biosphere, Scripta Books, Washington, D.C., pp. 299–309.Google Scholar
  7. Dolman, A. J.: 1986, ‘Estimates of Roughness Length and Zero Plane Displacement for a Foliated and Non-Foliated Oak Canopy’, Agric. Forest Meteorol. 36, 241–248.Google Scholar
  8. Finnigan, J. J.: 1985, ‘Turbulent Transport in Flexible Plant Canopies’, in B. A. Hutchinson and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publ. Co., Dordrecht, Holland, pp. 443–480.Google Scholar
  9. Finnigan, J. J. and Mulhearn, P. J.: 1978a, ‘Modelling Waving Crops in a Win Tunnel’, Boundary-Layer Meteorol. 14, 253–277.Google Scholar
  10. Finnigan, J. J. and Mulhearn, P. J.: 1978b, ‘A Simple Mathematical Model of Airflow in Waving Plant Canopies’, Boundary-Layer Meteorol. 14, 415–431.Google Scholar
  11. Garratt, J. R.: 1980, ‘Surface Influence Upon Vertical Profiles in the Atmospheric Near-Surface Layer’, Quart. J. Roy. Meteorol. Soc. 106, 803–819.Google Scholar
  12. Gary, H. L.: 1976, ‘Crown Structure and Distribution of Biomass in a Lodgepole Pine Stand’, USDA Forest Service Research Paper, RM-165, 20pp.Google Scholar
  13. Grant, R. H.: 1983, ‘The Scaling of Flow in Vegetative Structures’, Boundary-Layer Meteorol. 27, 171–184.Google Scholar
  14. Grant, R. H.: 1984, ‘The Mutual Interference of Spruce Canopy Structural Elements’, Agric. Forest Meteorol. 32, 145–156.Google Scholar
  15. Grant, R. H.: 1985, ‘The Influence of the Physical Attributes of a Spruce Shoot on Momentum Transfer’, Agric. Forest Meteorol. 36, 7–18.Google Scholar
  16. Halldin, S. and Lindroth, A.: 1986, ‘Pine Forest Microclimate Simulation using Different Diffusivities’, Boundary-Layer Meteorol. 35, 103–123.Google Scholar
  17. Inoue, E.: 1963, ‘On the Turbulent Structure of Airflow within Crop Canopies’, J. Meteorol. Soc. Japan 41, 317–326.Google Scholar
  18. Landsberg, J. J. and Thom, A. S.: 1971, ‘Aerodynamic Properties of a Plant of Complex Structure’, Quart. J. Roy. Meteorol. Soc. 97, 565–570.Google Scholar
  19. Legg, B. J.: 1975, ‘Turbulent Diffusion Within a Wheat Canopy: I. Measurement Using Nitrous Oxide’, Quart. J. Roy. Meteorol. Soc. 101, 597–610.Google Scholar
  20. Legg, B. J. and Long, I. F.: 1975, ‘Turbulent Diffusion Within a Wheat Canopy: II. Results and inter-pretation’, Quart. J. Roy. Meteorol. Soc. 101, 611–628.Google Scholar
  21. Li, Z. J., Miller, D. R., and Lin, J. D.: 1985, ‘A First-Order Closure Scheme to Describe Counter-Gradient Momentum Transport in Plant Canopies’, Boundary-Layer Meteorol. 33, 77–83.Google Scholar
  22. Meyers, T. and Paw, U. K. T.: 1986, ‘Testing of a Higher-Order Closure Model for Modeling Airflow Within and Above Plant Canopies’, Boundary-Layer Meteorol. 37, 297–311.Google Scholar
  23. Monteith, J. L.: 1963, ‘Gas Exchange in Plant Communities’, in L. T. Evans (ed.), Environmental Control of Plant Communities, Academic Press, New York, New York, pp. 95–112.Google Scholar
  24. Pereira, A. R. and Shaw, R. H.: 1980, ‘A Numerical Experiment of the Mean Wind Structure Inside Canopies of Vegetation’, Agric. Meteorol. 22, 303–318.Google Scholar
  25. Perrier, A.: 1967, ‘Approche Théorique de la Micro-Turbulence et des Transferts dans les Couverts Végétaux en vue de l'analyse de la Production végétale’, La Météorologie 5, 527–550.Google Scholar
  26. Raupach, M. R., Thom, A. S., and Edwards, L.: 1980, ‘A Wind Tunnel Study of Turbulent Flow Close to Regularly Arrayed Rough Surfaces’, Boundary-Layer Meteorol. 18, 373–397.Google Scholar
  27. Raupach, M. R., and Thom, A. S.: 1981, ‘Turbulence In and Above Plant Canopies’, Ann. Rev. Fluid Mech. 13, 97–129.Google Scholar
  28. Seginer, I.: 1974, ‘Aerodynamic Roughness of Vegetated Surfaces’, Boundary-Layer Meteorol. 5, 383–393.Google Scholar
  29. Sellers, P. J., Mintz, Y., Sud, Y., and Dalcher, A.: 1985, ‘A Simple Biosphere Model (SIB) for Use Within General Circulation Models’, J. Atmos. Sci. 43, 505–531.Google Scholar
  30. Shaw, R. H.: 1977, ‘Secondary Wind Speed Maxima Inside Plant Canopies’, J. Appl. Meteorol. 16, 514–521.Google Scholar
  31. Shaw, R. H. and Pereira, A. R.: 1982, ‘Aerodynamic Roughness of Plant Canopy: A Numerical Experiment’, Agric. Meteorol. 26, 51–65.Google Scholar
  32. Shaw, R. H., Den Hartog, G., King, K. M., and Thurtell, G. W.: 1974, ‘Measurements of Mean Wind Flow and Three-Dimensional Turbulence Intensity within a Mature Corn Canopy’, Agric. Meteorol. 13, 419–425.Google Scholar
  33. Stewart, D. W. and Lemon, E. R.: 1969, The Energy Budget of the Earth's Surface: A Stimulation of Net Photosynthesis of Field Corn, Technical Report ECOM 2–68 1–68 TASK ITO-61102-B53A-17, Cornell University, Ithaca, New York.Google Scholar
  34. Taconet, O., Bernard, R., and Vidal-Madjas, D.: 1986, ‘Evapotranspiration over an Agricultural Region Using a Surface Flux/Temperature Model Based on NOAA-AVHRR Data’, J. of Clim. Appl. Meteorol. 25, 284–307.Google Scholar
  35. Thom, A. S.: 1971, ‘Momentum Absorption by Vegetation’, Quart. J. Roy. Meteorol. Soc. 97, 414–428.Google Scholar
  36. Wilson, J. D., Ward, D. P., Thurtell, G. W., and Kidd, G. E.: 1982, ‘Statistics of Atmospheric Turbulence within and above a Corn Canopy’, Boundary-Layer Meteorol. 24, 495–519.Google Scholar
  37. Yamada, T.: 1982, ‘A Numerical Model Study of Turbulent Airflow in and above a Forest Canopy’, J. Meteorol. Soc. Japan 60, 439–454.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • William Massman
    • 1
  1. 1.Laboratory for Atmospheres, NASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations