Climatic Change

, Volume 21, Issue 3, pp 289–302 | Cite as

Extreme events in a changing climate: Variability is more important than averages

  • Richard W. Katz
  • Barbara G. Brown


Extreme events act as a catalyst for concern about whether the climate is changing. Statistical theory for extremes is used to demonstrate that the frequency of such events is relatively more dependent on any changes in the variability (more generally, the scale parameter) than in the mean (more generally, the location parameter) of climate. Moreover, this sensitivity is relatively greater the more extreme the event. These results provide additional support for the conclusions that experiments using climate models need to be designed to detect changes in climate variability, and that policy analysis should not rely on scenarios of future climate involving only changes in means.


Change Climate Statistical Theory Climate Variability Scale Parameter Future Climate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. M., Rosenzweig, C., Peart, R. M., Ritchie, J. T., McCarl, B. A., Glyer, J. D., Curry, R. B., Jones, J. W., Boote, K. J., and Allen, L. H., Jr.: 1990, ‘Global Climate Change and US Agriculture’, Nature 345, 219–224.Google Scholar
  2. Balling, R. C. J., Jr., Skindlov, J. A., and Phillips, D. H.: 1990, ‘The Impact of Increasing Summer Mean Temperatures on Extreme Maximum and Minimum Temperatures in Phoenix’, J. Climate 3, 1491–1494.Google Scholar
  3. Brown, B. G. and Katz, R. W.: 1991, ‘Characteristics of Extreme Temperature Events in the U.S. Midwest and Southeast: Implications for Climate Change’, Preprints, Seventh Conference on Applied Climatology, American Meteorological Society, Boston, pp. J30-J36.Google Scholar
  4. Buishand, T. A.: 1989, ‘Statistics of Extremes in Climatology’, Statistica Neerlandica 43, 1–30.Google Scholar
  5. Essenwanger, O. M.: 1976, Applied Statistics in Atmospheric Science, Elsevier, Amsterdam.Google Scholar
  6. Faragó, T. and Katz, R. W.: 1990, ‘Extremes and Design Values in Climatology’, Report No. WCAP-14, WMO/TD-No. 386, World Meteorological Organization, Geneva.Google Scholar
  7. Garrido, J. and Katz, R. W.: 1992, ‘Sensitivity of Extreme Precipitation Events to Climate Change’, (submitted).Google Scholar
  8. Glantz, M. H. (ed.): 1987, Drought and Hunger in Africa: Denying Famine a Future, Cambridge University Press, Cambridge.Google Scholar
  9. Hansen, J. and Lebedeff, S.: 1987, ‘Global Trends of Measured Surface Air Temperature’, J. Geophys. Res. 92, 13345–13372.Google Scholar
  10. Hansen, J. and Lebedeff, S.: 1988, ‘Global Surface Air Temperature: Update through 1987’, Geophys. Res. Letters 15, 323–326.Google Scholar
  11. Hillier, F. S. and Lieberman, G. J.: 1986, Introduction to Operations Research (4th ed.), Holden-Day, Oakland.Google Scholar
  12. Johnson, N. L. and Kotz, S.: 1970, Continuous Univariate Distributions - 2, Wiley, New York.Google Scholar
  13. Katz, R. W.: 1988a, ‘Statistical Procedures for Making Inferences about Climate Variability’, J. Climate 1, 1057–1064.Google Scholar
  14. Katz, R. W.: 1988b, ‘Statistics of Climate Change: Implications for Scenario Development’, in Glantz, M. H. (ed.), Societal Responses to Regional Climatic Change: Forecasting by Analogy, Westview Press, Boulder, pp. 95–112.Google Scholar
  15. Katz, R. W.: 1991, ‘Towards a Statistical Paradigm for Climate Change’, Preprints, Seventh Conference on Applied Climatology, American Meteorological Society, Boston, pp. 4–9.Google Scholar
  16. Katz, R. W. and Brown, B. G.: 1989, ‘Climate Change for Extreme Events: An Application of the Theory of Extreme Values’, Preprints, Eleventh Conference on Probability and Statistics in Atmospheric Sciences, American Meteorological Society, Boston, pp. 10–15.Google Scholar
  17. Katz, R. W. and Brown, B. G.: 1992, ‘Sensitivity of Extreme Events to Climate Change: The Case of Autocorrelated Time Series’ (submitted).Google Scholar
  18. Lamb, P. J.: 1987, ‘On the Development of Regional Climatic Scenarios for Policy-Oriented Climatic- Impact Assessment’, Bull. Amer. Meteorol. Soc. 68, 1116–1123.Google Scholar
  19. Leadbetter, M. R., Lindgren, G., and Rootzen, H.: 1983, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York.Google Scholar
  20. LeBoutillier, D. W. and Waylen, P. R.: 1988, ‘Stochastic Analysis of Cold Spells’, J. Appl. Meteorol. 27, 67–76.Google Scholar
  21. Mearns, L. O., Katz, R. W., and Schneider, S. H.: 1984, ‘Extreme High-Temperature Events: Changes in their Probabilities with Changes in Mean Temperature’, J. Clim. Appl. Meteorol. 23, 1601–1613.Google Scholar
  22. Mearns, L. O., Schneider, S. H., Thompson, S. L., and McDaniel, L. R.: 1990, ‘Analysis of Climate Variability in General Circulation Models: Comparison with Observations and Changes in Variability in 2 × CO2 Experiments’, J. Geophys. Res. 95, 20469–20490.Google Scholar
  23. Miller, K. A. and Glantz, M. H.: 1988, ‘Climate and Economic Competitiveness: Florida Freezes and the Global Citrus Processing Industry’, Climatic Change 12, 135–164.Google Scholar
  24. Mitchell, J. F. B., Manabe, S., Meleshko, V, and Tokioka, T.: 1990, ‘Equilibrium Climate Change - and its Implications for the Future’, in J. T. Houghton, G. J. Jenkins, and J. J. Ephraums (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 131–172.Google Scholar
  25. Parry, M. L. and Carter, T. R.: 1985, ‘The Effect of Climatic Variations on Agricultural Risk’, Climatic Change 7, 95–110.Google Scholar
  26. Rind, D., Goldberg, R., and Ruedy, R.: 1989, ‘Change in Climate Variability in the 21st Century’, Climatic Change 14, 5–37.Google Scholar
  27. Schlesinger, M. E. and Mitchell, J. F. B.: 1987, ‘Climate Model Simulations of the Equilibrium Climatic Response to Increased Carbon Dioxide’, Rev. Geophys. 25, 760–798.Google Scholar
  28. Schneider, S. H.: 1989, ‘The Greenhouse Effect: Science and Policy’, Science 243, 771–781.Google Scholar
  29. Solow, A. R. and Broadus, J. M.: 1989, ‘On the Detection of Greenhouse Warming’, Climatic Change 15, 449–453.Google Scholar
  30. Tiago de Oliveira, J.: 1986, ‘Extreme Values and Meteorology’, Theoret. Appl. Clim. 37, 184–193.Google Scholar
  31. Waggoner, P. E.: 1989, ‘Anticipating the Frequency Distribution of Precipitation if Climate Change Alters Its Mean’, Agricult. Forest Meteorol. 47, 321–337.Google Scholar
  32. Wigley, T. M. L.: 1985, ‘Impact of Extreme Events’, Nature 316, 106–107.Google Scholar
  33. Wigley, T. M. L.: 1988, ‘The Effect of Changing Climate on the Frequency of Absolute Extreme Events’, Climate Monitor 17, 44–55.Google Scholar
  34. Wood, F. B.: 1990, ‘Monitoring Global Climate Change: The Case of Greenhouse Warming’, Bull. Amer. Meteorol. Soc. 71, 42–52.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Richard W. Katz
    • 1
  • Barbara G. Brown
    • 1
  1. 1.Environmental and Societal Impacts Group, National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations