Advertisement

Climatic Change

, Volume 12, Issue 3, pp 265–295 | Cite as

Solar rotation, impulses of the torque in the Sun's motion, and climatic variation

  • T. Landscheidt
Article

Abstract

Running variance analysis and maximum entropy spectral analysis applied to Mount Wilson rotation data yield arguments in favor of a connection between variations in the Sun's rotation rate, energetic X-ray flares, and impulses of the torque (IOT) in the Sun's irregular motion about the barycenter of the planetary system. Such IOT, that have been shown to be related to the secular cycle of solar activity and excursions of the Maunder minimum type, also seem to be linked to outstanding peaks in geomagnetic activity, maxima in ozone concentration, incidence of blocking type circulation, as well as rainfall over Central Europe, England/Wales, eastern United States, and India. Statistical tests, that confirm these links, additionally point to IOT connection with temperature in Central Europe and the number of icebergs that pass south of latitude 48° N. IOT relationship with X-ray flares and strong geomagnetic storms was tested in successful long range forecasts.

Keywords

Torque Ozone Ozone Concentration Geomagnetic Storm Geomagnetic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Glossary of Abbreviated Terms

Ac

Equatorial angular sidereal solar rotation rate corrected for scattered light and averaged over respective Carrington rotations.

c-events

See JU-CM-CSc.

CM

Center of mass of the solar system.

CS

Center of the Sun.

ΔL

Change of angular momentum L in the Sun's orbital motion about CM caused by an impulse of the torque (IOT). This change is measured by the time integral of the torque \(\Delta L = \int_{t_0 }^{t_1 } {T(t)dt}\).

df

Degrees of freedom.

g-events

See JU-CM-CSg.

IOT

Impulse of the torque in the Sun's irregular orbital motion about the center of mass of the solar system CM. The intensity of IOT is measured by the change in angular momentum ΔL effected by the impulse.

JU-CM-CS

Solar system constellation that is formed when the center of mass CM, the Sun's center CS and the giant planet Jupiter (JU) are in line. JU-CM-CS events initiate impulses of the torque IOT in the Sun's irregular revolution about CM.

JU-CM-CSc

JU-CM-CS event that is accompanied with a sharp increase in orbital angular momentum and centrifugal motion of the Sun away from CM.

JU-CM-CSg

JU-CM-CS event that goes along with a steep decrease in orbital angular momentum L and centripetal motion of the Sun toward CM due to prevailing gravitation.

L

Angular momentum of the Sun's orbital motion around CM.

T

Torque, the varying ‘rotary force’ applied to the Sun in its orbital motion about CM that is equal to the time rate of change of the angular momentum L.

v

Running variance: the smoothing technique of running means over two or more consecutive readings is applied to variance, the square of the standard deviation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balthasar, H. and Woehl, H.: 1980, ‘Differential Rotation and Meridional Motions of Sunspots in the Years 1940–1968’, Astron. Astrophys. 92, 111–116.Google Scholar
  2. Balthasar, H., Vazquez, M., and Woehl, H.: 1986, ‘Differential Rotation of Sunspot Groups in the Period from 1874 through 1976 and Changes of the Rotation Velocity within the Solar Cycle’, Astron. Astrophys. 155, 87–98.Google Scholar
  3. Bates, J. R.: 1981, ‘A Dynamical Mechanism through which Variations in Solar Ultraviolet Radiation Can Infuence Tropospheric Climate’, Sol. Phys. 74, 399–415.Google Scholar
  4. Båth, M.: 1974, Spectral Analysis in Geophysics, Elsevier, Amsterdam.Google Scholar
  5. Baur, F.: 1975, ‘Abweichungen der Monatsmittel der Temperatur Mitteleuropas und des Niederschlags in Deutschland’, Beilage zur Berliner Wetterkarte des Inst. f. Meteorologie der FU Berlin vom 24.6.1975.Google Scholar
  6. Bell, P. R.: 1981, ‘Variations of the Solar Constant’, NASA Conference Publication 2191.Google Scholar
  7. Beynon, W. J. G. and Winstanley, E. H.: 1969, ‘Geomagnetic Disturbance and the Troposphere’, Nature 222, 1262–1263.Google Scholar
  8. Blizard, J. B.: 1969, ‘Long Range Solar Flare Prediction’, NASA Report, Contract NAS8-21436.Google Scholar
  9. Bossolasco, M., Dagnino, I., Elena, A., and Flocchioni, G.: 1972, ‘Solar Flare Control of Thunderstorm Activity’, Institute Universitario Navale di Napoli.Google Scholar
  10. Bucha, V.: 1983, ‘Direct Relations between Solar Activity and Atmospheric Circulation, its Effect on Changes of Weather and Climate’, Studia geoph. et geod. 27, 19–45.Google Scholar
  11. Burg, J. P.: 1968, ‘A New Analysis Technique for Time Series Data’, paper presented at NATO Advanced Institute of Signal Processing, Enschede.Google Scholar
  12. Burg, J. P.: 1972, ‘The Relationship between Maximum Entropy and Maximum Likelihood Spectra’, Geophysics 37, 375–376.Google Scholar
  13. Burg, J. P.: 1975, ‘Maximum Entropy Analysis’, Ph.D. thesis, Stanford University, Palo Alto.Google Scholar
  14. Chamberlain, J. W.: 1982, ‘The Influence of Solar Ultraviolet Variability on Climate’, Planet. Space Sci. 30, 147–150.Google Scholar
  15. Chistyakov, V. F.: 1976, ‘The Rapid Oscillations of the Solar Rotation’, Bull. Astron. Inst. Czechoslovakia 27, 84–91.Google Scholar
  16. Clark, D. H., Yallop, B. D., Richard, S., and Emerson, B.: 1979, ‘Differential Solar Rotation Depends on Solar Activity’, Nature 280, 299–300.Google Scholar
  17. Cobb, W. E.: 1967, ‘Evidence of Solar Influence on the Atmospheric Electric Elements at Mauna Loa Observatory’, Mon. Weather Rev. 95, 905–911.Google Scholar
  18. Crutzen, P. J. and Solomon, S.: 1980, ‘Response of Mesospheric Ozone to Particle Precipitation’, Planet. Space Sci. 28, 1147.Google Scholar
  19. Currie, R. G.: 1981, ‘Evidence for 18.6 year Mn Signal in Temperature and Drought Conditions in North America since AD 1800’, J. Geophys. Res. 8, 11055–11064.Google Scholar
  20. Dicke, R. H.: 1964, ‘The Sun's Rotation and Relativity’, Nature 202, 432–435.Google Scholar
  21. Duetsch, H. U.: 1974, ‘The Ozone Distribution in the Atmosphere’, Can. J. Chem. 52, 1491–1504 (Figure 9 was adapted from a plot by H. U. Duetsch, Eidgenössische Technische Hochschule Zürich, in Rowland, F. S.: 1978, ‘Stratospheric Ozone: Earth's Fragile Shield’, 1979 Yearbook of Science and the Future, Encyclopaedia Britannica, University of Chicago).Google Scholar
  22. Eddy, J. A., Gilman, P. A., and Trotter, D. E.: 1977, ‘Anomalous Solar Rotation in the Early 17th Century’, Science 198, 824–829.Google Scholar
  23. Eddy, J. A.: 1977, ‘The Case of the Missing Sunspots’, Scient. American 236, 80–92.Google Scholar
  24. Eddy, J. A.: 1979, ‘A New Sun. The Solar Results from Skylab’, NASA, Washington, D.C.Google Scholar
  25. Eddy, J. A., ed.: 1982, ‘Solar Variability, Weather, and Climate’, National Academy Press, Washington, D.C.Google Scholar
  26. EOS, Transactions, American Geophysical Union: 1985, 441.Google Scholar
  27. EOS, Transactions, American Geophysical Union: 1987, 668.Google Scholar
  28. Fairbridge, R. W. and Hillaire-Marcel, C.: 1977, ‘An 8000-Year Paleoclimatic Record of the Double-Hale 45-Year Solar Cycle’, Nature 268, 413–416.Google Scholar
  29. Faure, H. and Gac, J. Y.: 1981, ‘Will the Sahelian Drought End in 1985?’, Nature 291, 475–478.Google Scholar
  30. Feynman, R. P., Leighton, R. B., and Sands, M.: 1966, ‘The Feynman Lectures on Physics’, Vol. 1, Addison-Wesley, Reading.Google Scholar
  31. Frank-Kamenetskii, D. A.: 1972, ‘Plasma: The Fourth State of Matter’, Plenum Press, New York.Google Scholar
  32. Gelopolsky, A.: 1933, Z. Astrophys. 7, 357.Google Scholar
  33. Gilman, P. A. and Howard, R.: 1984, ‘Variations in Solar Rotation with the Sunspot Cycle’, Astrophys. J. 283, 385–391.Google Scholar
  34. Godoli, G. and Mazzucconi, F.: 1979, ‘On the Rotation Rates of Sunspot Groups’, Sol. Phys. 64, 247–254.Google Scholar
  35. Gosling, J. T., Asbridge, J. R., and Bame, S. J.: 1977, ‘An Unusual Aspect of Solar Wind Speed Variations during Solar cycle 20’, J. Geophys. Res. 82, 3311–3314.Google Scholar
  36. Gregg, D. P.: 1984, ‘A Nonlinear Solar Cycle Model with Potential for Forecasting on a Decadal Time Scale’, Sol. Phys. 90, 185–194.Google Scholar
  37. Groveman, B. S. and Landsberg, H. E.: 1979, ‘Reconstruction of the Northern Hemisphere Temperature: 1579–1880’, Publ. No. 79 181/182, Department of Meteorology, University of Maryland.Google Scholar
  38. Hale, L. C.: 1979, ‘Solar Modulation of Atmospheric Electrification and the Sun-Weather Relationship’, Nature 278, 373.Google Scholar
  39. Hale, L. C.: 1983, ‘Experimentally Determined Factors Influencing Electrical Coupling Mechanisms’, in McCormac, B. M. Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.Google Scholar
  40. Heath, D. F., Krueger, A. J., and Crutzen, P. J.: 1977, ‘Solar Proton Event: Influence on Stratospheric Ozone’, Science 197, 886.Google Scholar
  41. Hedeman, E. R. and Dodson-Prince, H.: ‘Indications of Probable Eevels of Sunspot Numbers and Geomagnetic Disturbance in Solar Cycle 22’, in Simon, P. A., Heckman, G., and Shea, M. A.: ‘Solar-Terrestrial Predictions: Proceedings of a Workshop at Meudon, June 18–22, 1984’, National Oceanic and Atmospheric Administration, Boulder 1986, 97–98.Google Scholar
  42. Howard, R.: 1975, ‘The Rotation of the Sun’, Scient. American 232, 106–114.Google Scholar
  43. Howard, R. and EaBonte, B. J.: 1980, ‘The Sun Is Observed to Be a Torsional Oscillator with a Period of 11 Years’, Astrophys. J., Lett. 239, L33-L36.Google Scholar
  44. Howard, R., Adkins, J. M., Boyden, T. A., Cragg, T. A., Gregory, T. S., LaBonte, B. J., Padilla, S. P., and Webster, E.: 1983, ‘Solar Rotation Results at Mount Wilson’, Solar Physics 83, 321–338.Google Scholar
  45. Howard, R.: 1984, ‘Solar Rotation’, Ann. Rev. Astron. Astrophys. 22, 131–155.Google Scholar
  46. Jones, P. D., Wigley, T. M. E., and Kelly, P. M.: 1982, ‘Variations in Surface Air Temperatures: Part 1, Northern Hemisphere, 1881–1980’, Mon. Weather Rev. 110, 59–69.Google Scholar
  47. Jose, P. D.: 1965, ‘Sun's Motion and Sunspots’, Astron. J. 70, 193–200.Google Scholar
  48. Joselyn, J. A.: 1986, ‘SESC Methods for Short-Term Geomagnetic Predictions’, in Simon, P. A., Heckman, M. A. and Shea, M. A.: ‘Solar-Terrestrial Predictions’, National Oceanic and Atmospheric Administration, Boulder 1986, 404–414.Google Scholar
  49. Kadomtsev, B. B.: 1965, ‘Plasma Turbulence’, New York.Google Scholar
  50. Keating, G. M.: 1981, ‘The Response of Ozone to Solar Activity Variations: A Review’, Sol. Phys. 74, 321–347.Google Scholar
  51. King, J. W.: 1974, ‘Weather and the Earth's Magnetic Field’, Nature 247, 131–134.Google Scholar
  52. Lamb, H. H.: 1977, ‘Climate Present, Past and Future’, Vol. 2, ‘Climatic History and the Future’, Methuen, London.Google Scholar
  53. Landscheidt, T.: 1976, ‘Beziehungen zwischen der Sonnenaktivität und dem Massenzentrum des Sonnensystems’, Nachrichten der Olbers-Gesellschaft 100, 2–19.Google Scholar
  54. Landscheidt, T.: 1980, ‘Säkularer Tiefpunkt der Sonnenaktivität - Ursache einer Kälteperiode um das Jahr 2000?’, Jahrb. d. Wittheit zu Bremen 24, 189–220.Google Scholar
  55. Landscheidt, T.: 1981, ‘Swinging Sun, 79-Year Cycle, and Climatic Change’, J. Interdiscipl. Cycle Res. 12, 3–19.Google Scholar
  56. Landscheidt, T.: 1983, ‘Solar Oscillations, Sunspot Cycles, and Climatic Change’, in B. M. Mc-Cormac, ed.: 1983, ‘Weather and Climate Responses to Solar Variations’, Colorado Associated University Press, Boulder, 293–308.Google Scholar
  57. Landscheidt, T.: 1984, ‘Cycles of Solar Flares and Weather’, in Moerner, N. A. and Karlén, W. (eds.), ‘Climatic Changes on a Yearly to Millenial Basis’, D. Reidel Publ. Co., Dordrecht, pp. 473–481.Google Scholar
  58. Landscheidt, T.: 1986a, ‘Long-Range Forecast of Energetic X-Ray Bursts Based on Cycles of Flares’, in Simon, P. A., Heckman, G., and Shea, M. A. (eds.), Solar-Terrestrial Predictions, National Oceanic and Atmospheric Administration, Boulder, pp. 81–89.Google Scholar
  59. Landscheidt, T.: 1986b, ‘Long Range Forecast of Sunspot Cycles’, in Simon, P. A. Heckman, G., and Shea, M. A. (eds.), Solar- Terrestrial Predictions, National Oceanic and Atmospheric Administration, Boulder, pp.48–57.Google Scholar
  60. Landscheidt, T.: 1987, ‘Long Range Forecasts of Solar Cycles and Climate Change’, in Sanders, J. E. and Rampino, M. R. (eds.), Climate: History, Periodicity, Predictability, Festschrift in honor of Rhodes W. Fairbridge, van Nostrand Reinhold, New York, pp. 421–445.Google Scholar
  61. Livingston, W. and Duvall, T. L.: 1979, ‘Solar Rotation: 1966–1978’, Sol. Phys. 61, 219–231.Google Scholar
  62. Manley, G.: 1974, ‘Central England Temperatures: Monthly Means 1659 to 1973’, Quart. J. Roy. Met. Soc. 100, 389–405.Google Scholar
  63. Markson, R.: 1979, ‘Atmospheric Electricity and the Sun-Weather Problem’, in McCormac, B. M. and Seliga, T. A., Solar-Terrestrial Influences on Weather and Climate, D. Reidel Publ. Co., Dordrecht.Google Scholar
  64. Markson, R.: 1983, ‘Solar Modulation of Fair-Weather and Thunderstorm Electrification and a Proposed Program to Test an Atmospheric Electrical Sun-Weather Mechanism’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.Google Scholar
  65. Mayaud, P. N.: 1973, ‘A Hundred Year Series of Geomagnetic Data 1868–1967’, IAGA Bulletin No. 33, IUGG Publication Office, Paris.Google Scholar
  66. Mayaud, P. N. and Romana, A.: 1977, ‘Supplementary Geomagnetic Data 1957–1975’, IAGA Bulletin No. 39, IUGG Publication Office, Paris.Google Scholar
  67. Mayaud, P. N.: 1980, ‘Derivation, Meaning, and Use of Geomagnetic Data’, Geophysical Monograph 22, American Geophysical Union, Washington, D. C.Google Scholar
  68. Mitchell, J. M.: 1983, ‘Empirical Modelling of Effects of Solar Variability, Volcanic Events, and Carbon Dioxide on Global-Scale Average Temperature since A.D. 1880’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.Google Scholar
  69. Mooley, D. A. and Parthasarathy, B.: 1984, ‘Fluctuations in All-India Summer Monsoon Rainfall During 1871–1978’, Climatic Change 6, 287–301.Google Scholar
  70. Mustel, E. R.: 1966, ‘The Influence of Solar Activity on the Troposphere in the Polar Cap Regions’, Soviet Astronomy - AJ 10, 288–294.Google Scholar
  71. Mustel, E. R.: 1977, ‘Solar Activity and the Troposphere’, Translation from Russian, Available from NTIS, Springfield, VA 22151, 25–52.Google Scholar
  72. Neubauer, L.: 1983, ‘The Sun-Weather Connection - Sudden Stratospheric Warmings Correlated with Sudden Commencements and Solar Proton Events’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder 1983, 395–397.Google Scholar
  73. Newell, R. E.: 1983, ‘Comments on the Boulder Solar-Terrestrial Symposium’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.Google Scholar
  74. Perepelkin, E. J.: 1933, Z. Astrophys. 6, 121.Google Scholar
  75. Prohaska, J. T. and Willett, H. C.: 1983, ‘Dominant Modes of Relationship between U.S. Temperature and Geomagnetic Activity’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Activity, Colorado Associated University Press, Boulder 1983, 489–494.Google Scholar
  76. Recely, F. and Harvey, K. L.: 1986, ‘He I 10830 Observations of Flare Generated Coronal Holes’, in Simon, P. A., Heckman, G., and Shea, M. A. (eds.), Solar-Terrestrial Predictions, National Oceanic and Atmospheric Administration, Boulder, pp. 204–211.Google Scholar
  77. Roberts, W. and Olson, R. H.: 1973, J. Atmos. Sci. 30, 135.Google Scholar
  78. Reiter, R.: 1969, ‘Solar Flares and Their Impact on Potential Gradient and Air-Earth Current Characteristics at High Mountain Stations’, Pure Appl. Geophys. 72, 259–267.Google Scholar
  79. Reiter, R.: 1971, ‘Further Evidence for Impact of Solar Flares on Potential Gradient and Air- Earth Current Characteristics at High Mountain Stations’, Pure Appl. Geophys. 86, 142–158.Google Scholar
  80. Reiter, R.: 1979, ‘Influences of Solar Activity on the Electrical Potential between the Ionosphere and the Earth’, in McCormac, B. M. and Seliga, T. S. (eds.), Solar-Terrestrial Influences on Weather and Climate, D. Reidel Publ. Co., Dordrecht.Google Scholar
  81. Reiter, R.: 1983, ‘Modification of the Stratospheric Ozone Profile after Acute Solar Events’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.Google Scholar
  82. Roble, R. G.: 1983, ‘Panel Discussion: the Reality of the Association between Solar Activity (Such as Flares) and Atmospheric Electrical Effects (Including Thunderstorms)’, directed by W. O. Roberts, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.Google Scholar
  83. Roble, R. G.: 1985, ‘On Solar-Terrestrial Relationships in Atmospheric Electricity’, J. Geophys.Res. 90, 6000–6012.Google Scholar
  84. Sakurai, K.: 1974, ‘Physics of Solar Cosmic Rays’, University of Tokyo Press.Google Scholar
  85. Sazonov, B. I.: 1965, ‘On the Solar-Troposphere Relation’, Astron. Zhurnal 42, 653–655.Google Scholar
  86. Sazonov, B. I.: 1974, ‘Circulation in the Troposphere and Anomaly in the Terrestrial Magnetic Field’, in Drodzdov, O. A. and Vorob'eva (eds.), General and Synoptic Climatology, Trudy, Vyp. 316, Leningrad, Glavnaja Geofiziceskaja Observatorija, 35–42.Google Scholar
  87. Schneider, S. H. and Mass, C.: 1975, ‘Volcanic Dust, Sunspots, and Temperature Trends’, Science 180, 741–746.Google Scholar
  88. Schoenwiese, C. D.: 1984, ‘Northern Hemisphere Temperature Statistics and Forcing Part B: 1579–1980 AD’, Arch. Met. Geoph. Biocl. Ser. B 35, 155–178.Google Scholar
  89. Schuurmans, C. J. E.: 1979, ‘Effects of Solar Flares on the Atmospheric Circulation’, in McCormac, B. M. and Seliga, T. A. (eds.), Solar-Terrestrial Influences on Weather and Climate, D. Reidel Publ. Co., Dordrecht.Google Scholar
  90. Schwenn, R. and Rosenbauer, H.: 1984, ‘10 Jahre Sonnenwindexperiment auf Helios 1 und 2’, in Porsche, H. (ed.), 10 Years Helios, DFVLR Oberpfaffenhofen.Google Scholar
  91. Sidorenkov, N. S.: 1974, ‘Solar Corpuscular Fluxes and Weather on Earth’, Moscow Akademija Nauk, Priroda 3, 14–23.Google Scholar
  92. Smith, H. J. and Smith, E. V. P.: 1963, Solar Flares, Macmillan, New York.Google Scholar
  93. St. John, C. E.: 1932, Trans. IAU4, 42–44.Google Scholar
  94. Stockton, C. W., Mitchell, J. M., and Meko, D.M.: 1983, ‘A Reappraisal of the 22-Year Drought Cycle’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.Google Scholar
  95. Stolov, H. L. and Shapiro, R.: 1974, ‘Investigation of the Responses of the General Circulation at 700 mb to Solar Geomagnetic Disturbance’, J. Geophys. Res. 79, 2161–2170.Google Scholar
  96. Storey, J.: 1932, Monthly Notices Roy. Astrom. Soc. 92, 737–741.Google Scholar
  97. Wilcox, J. M.: 1975, ‘SolarActivity and the Weather’, J. Atmosph. Terr. Phys. 37, 237–256.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • T. Landscheidt
    • 1
  1. 1.Schroeter Institute for Research in Cycles of Solar ActivityLilienthalF.R.G.

Personalised recommendations