Climatic Change

, Volume 2, Issue 3, pp 207–247 | Cite as

Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning

  • Wolfgang Seiler
  • Paul J. Crutzen


In order to estimate the production of charcoal and the atmospheric emissions of trace gases volatilized by burning we have estimated the global amounts of biomass which are affected by fires. We have roughly calculated annual gross burning rates ranging between about 5 Pg and 9 Pg (1 Pg = 1015 g) of dry matter (2–4 Pg C). In comparison, about 9–17 Pg of above-ground dry matter (4–8 Pg C) is exposed to fires, indicating a worldwide average burning efficiency of about 50%. The production of dead below-ground dry matter varies between 6–9 Pg per year. We have tentatively indicated the possibility of a large production of elemental carbon (0.5–1.7 Pg C/yr) due to the incomplete combustion of biomass to charcoal. This provides a sink for atmospheric CO2, which would have been particularly important during the past centuries. From meager statistical information and often ill-documented statements in the literature, it is extremely difficult to calculate the net carbon release rates to the atmosphere from the biomass changes which take place, especially in the tropics. All together, we calculate an overall effect lof the biosphere on the atmospheric carbon dioxide budget which may range between the possibilities of a net uptake or a net release of about 2 Pg C/yr. The release of CO2 to the atmosphere by deforestation projects may well be balanced by reforestation and by the production of charcoal. Better information is needed, however, to make these estimates more reliable.


Biomass Charcoal Burning Rate Biomass Burning Elemental Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. A. S., M. S. M. Mantovani, and L. L. Lundell: 1977, ‘Wood versus fossil fuel as a source of excess carbon dioxide in the atmosphere: a preliminary report’, Science 196, 54–56.Google Scholar
  2. Ahlgren, C. E.: 1974, ‘Effects of Fires on Temperate Forests; North Central United States’, Fire and Ecosystems, T. T. Kozlowski and C. E. Ahlgren, eds., Academic Press, New York, pp. 195–219.Google Scholar
  3. Alexander, M.: 1965, ‘Biodegradation: problems of molecular recalcitrance and microbial fallibility’, Adv. Appl. Microbiol. 7, 35–80.Google Scholar
  4. Allan, W.: 1965, The African Husbandman, Oliver and Boyd, London, 265 pp.Google Scholar
  5. Arnold, J. E. M., and J. Jongma: 1978, ‘Fuelwood and charcoal in developing countries’, Unasylva 29, 2–9.Google Scholar
  6. Augustsson, T., and V. Ramanathan: 1977, ‘A radiative-convective model study of the CO2-climate problem’, J. Atmos. Sci. 34, 448–451.Google Scholar
  7. Bach, W.: 1976, ‘Global air pollution and climatic change’, Rev. Geophys. Space Phys. 14, 429–474.Google Scholar
  8. Baes, C. F., Jr., H. E. Goeller, J. S. Olson, and R. M. Rotty: 1976, ‘The global carbon dioxide problem’, Oak Ridge National Laboratory, ORNL-5194.Google Scholar
  9. Batchelder, R. B.: 1967, ‘Spatial and temporal patterns of fire in the tropical world’, Proc. 6th Annual Tall Timber Fires Ecology Con., pp. 171–190.Google Scholar
  10. Batchelder, R. B., and H. F. Hirt: 1966, ‘Fire in tropical forests and grasslands’, Techn. Rep. 67–41-ES, U.S. Army Natick Lab., Natick, Mass., 380 pp.Google Scholar
  11. Bazilevich, N. I., L. Rodin, and N. M. Rozov: 1971, ‘Geographical aspects of biological productivity’, Sov. Geogr. Rev. Transl. 12, 293–317.Google Scholar
  12. Bazilevich, N. I., and L. Ye Rodin: 1971, ‘Geographical regularities in productivity and the circulation of chemical elements in the earth's main vegetation types’, Sov. Geogr. Rev. Transl. 12, 24–53.Google Scholar
  13. Bazilevich, N. I.: 1974, Energy Flow and Biological Regularities of the World Ecosystems, Jung, The Hague, 414 pp.Google Scholar
  14. Beall, F. C., and H. W. Eickner: 1970, ‘Thermal degradation of wood components: a review of the literature’, U.S.D.A. Forest Service Research Paper FPL 130, 26 pp.Google Scholar
  15. Berger, R., and W. F. Libby: 1966, ‘UCLA Radiocarbon Dates V’, Radiocarbon 8, 467–497.Google Scholar
  16. Berutti, P. A.: 1977, ‘Contribuicão energetica das florestas brasilieires’, Ciencia e cultura 29, 274–283.Google Scholar
  17. Bohn, H. L.: 1976, ‘Estimate of organic carbon in world soils’, Soil Sci. Soc. Am. J. 40, 468–470.Google Scholar
  18. Bohn, H. L.: 1978, ‘On organic soil carbon and CO2’, Tellus 309, 472–475.Google Scholar
  19. Bolin, B.: 1970, ‘The carbon cycle’, Sci. Am. 223, 124–132.Google Scholar
  20. Bolin, B.: 1977, ‘Changes of land biota and their importance for the carbon cycle’, Science 196, 613–615.Google Scholar
  21. Bolin, B.: 1979, ‘On the role of the atmosphere in biogeochemical cycles’, Quart. J. R. Met. Soc. 105, 25–42.Google Scholar
  22. Botkin, D. B., J. F. Janak, and J. R. Wallis: 1973, ‘Estimating the effects of carbon fertilization on forest composition by ecosystem simulation’, in Carbon and the Biosphere, G. M. Woodwell and E. V. Pecan, eds., NTIS, CONF-720510, pp. 328–344.Google Scholar
  23. Botkin, D. B.: 1977, ‘Forests, lakes, and the anthropogenic production of carbon dioxide’, Bioscience 27, 325–331.Google Scholar
  24. Bourlière, F., and M. Hadley: 1970, ‘The ecology of tropical savannas’, Ann. Rev. Ecol. Syst. l, 125–152.Google Scholar
  25. Breuer, G.: 1977, ‘Wird die Welt-Biomasse groesser oder kleiner?’, Naturw. Rdsch. 30, 281–286.Google Scholar
  26. Broecker, W. S., T. Takahashi, H. J. Simpson, and T.-H. Peng: 1979, ‘Fate of fossil fuel carbon dioxide and the global carbon budget’, Science 206, 409–418.Google Scholar
  27. Brown, A. P., and Brown, K. P., and Davis: 1973, Forest Fire, Control and Use, McGraw-Hill, N.Y., 686 pp.Google Scholar
  28. Chen-Tung, C., and F. J. Millero: 1979, ‘Gradual increase of oceanic CO2’, Nature 277, 205–206.Google Scholar
  29. Clawson, M.: 1979, ‘Forests in the long sweep of American history’, Science 204, 1168–1174.Google Scholar
  30. Conklin, H. C.: 1961, ‘The Study of Shifting Cultivation’, Current Anthropology 2, 27–35.Google Scholar
  31. Conklin, H. C.: 1962, ‘An ethnoecological approach to shifting agriculture’, in Readings in Cultural Geography, Chicago: University of Chicago: University of Chicago Press, P. L. Wagner and M. W. Mikesell, eds., pp. 457–464.Google Scholar
  32. Crutzen, P. J., L. E. Heidt, J. Krasnec, W. H. Pollock, and W. Seiler: 1979, ‘Biomass burning as a source of the atmospheric gases CO, H2, N2O, NO, CH3C1 and COS’, Nature 282, 253–256.Google Scholar
  33. Crutzen, P. J.: ‘Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide’, in Denitrification, Nitrification and Atmospheric N 2O, Wiley, New York, C. C. Delwiche, ed. in press.Google Scholar
  34. Dalrymple, D. G.: 1971, ‘Survey of multiple cropping in less developed countries’, USDA FEDR-12, 1–108.Google Scholar
  35. Daubenmire, R.: 1968, ‘Ecology of fire in grasslands, Advan. Ecol. Res. 5, 209–266.Google Scholar
  36. Davis, S. H.: 1977, ‘Victims of the Miracle’, in Development and the Indians of Brazil, Cambridge University Press, Cambridge U.K., 205 pp.Google Scholar
  37. Delwiche, C. C., and Likens, G. E.: 1977, ‘Biological response to fossil fuel combustion products’, in Global Chemical Cycles and Their Alteration by Man, W. Stumm, ed., Dahlem Konferenzen, Berlin, pp. 73–88.Google Scholar
  38. Denevan, W. M.: 1973, ‘Development and the imminent demise of the Amazon rain forest’, The Professional Geographer XXV, 130–135.Google Scholar
  39. Deschler, W. W.: 1974, ‘An examination of the extent of grass fires in the savannas of Africa along the southern side of the Sahara’, Ninth Int. Symp. on Remote Sensing on Environment, ERIM, Ann Arbor.Google Scholar
  40. Dodge, M.: 1972, ‘Forest fuel accumulation - a growing problem’, Science 177, 139–142.Google Scholar
  41. Duce, R. A.: 1978, ‘Speculations on the budget of particulate and vapor phase non-methane organic carbon in the global troposphere’, Pageoph. 116, 244–273.Google Scholar
  42. Dudal, R.: 1973, ‘Land and Water Development Assistance’, in Proceedings AID Soil and Water Management Workshop, Washington, D.C., pp. 177–180.Google Scholar
  43. Earl, D. E.: 1975, Forest Energy and Economic Development, Oxford, Clarendon Press.Google Scholar
  44. Eckholm, E. P.: 1976, Losing Ground: Environmental Stress and World Food Prospects, Norton, New York.Google Scholar
  45. Eckholm, E. P.: 1977, ‘The other energy crisis’, Chapter 3 in Desertification, M. H. Glantz, ed. Westview Press, Boulder, Colorado, pp. 39–56.Google Scholar
  46. Ehrlich, P. R., A. H. Ehrlich, and J. P. Holdren: 1973, Human Ecology, Freeman, San Francisco, p. 304.Google Scholar
  47. Fahnestock. G. R.: 1979, ‘Carbon input to the atmosphere from forest fires’, Science 192, 209–210.Google Scholar
  48. FAO, Wood: 1966, ‘World Trends and Projects’, Unasylva 20, 54–61.Google Scholar
  49. FAO, Yearbook of Forest Products 1963–1974, Food and Agricultural Organization, Rome, 1976.Google Scholar
  50. Fearnside, P. M.: 1978, ‘Estimation of carrying capacity for human population in a part of the Trans-Amazonian Highway colonization area of Brazil’, University of Michigan, Dissertation, Ann Arbor, Michigan, 624 pp.Google Scholar
  51. Fleuret, P. C., and A. K. Fleuret: 1978, ‘Fuelwood use in a peasant community: a Tanzanian case study’, JDA 12, 315–322.Google Scholar
  52. Flohn, H.: 1963, ‘Man's activity as a factor in climatic change’, Annals New York Academy of Science, pp. 271–281.Google Scholar
  53. Flohn, H.: 1973, Globale Energiebilanz und Klimaschwankungen, Bonner Meteor. Abhandl. 19.Google Scholar
  54. Freyer, H. D.: 1979a, ‘On the 13C record in tree rings. Part I. 13C variations in northern hemispheric trees during the last 150 years’, Tellus 31, 124–137.Google Scholar
  55. Freyer, H. D.: 1979b, ‘On the 13C record in tree rings, Part II. Registration of microenvironmental CO2 and anomalous pollution effect’, Tellus 31, 308–312.Google Scholar
  56. Glinka, K.: 1914, ‘Die Typen der Bodenbildung, ihre Klassifikation und geographische Uerbreitung’, Gebrueder Borntraeger Heidelberg, pp. 1–365.Google Scholar
  57. Goldemberg, J.: 1978, ‘Brazil: Energy options and current outlook’, in Energy II, P. H. Abelson and A. L. Hammond, eds, AAAS, Washington, D.C. pp. 28–34.Google Scholar
  58. Golley, F. Z.: 1975, ‘Productivity and mineral cycling in tropical forests’, NSF report ISBN-0-309- 02317-3, pp. 106–116.Google Scholar
  59. Goodland, R. J. A., and H. S. Irwin: 1974, ‘An ecological discussion of the environmental impact of the highway construction program in the Amazon Basin’, Landscape Planning 1, 123–254.Google Scholar
  60. Greenland, D. J., and P. H. Nye: 1959, ‘Increases in the carbon and nitrogen contents of tropical soils under natural fallow’, J. Soil Sci. 10, 284–299.Google Scholar
  61. Griffin, J. J., and E. D. Goldberg: ‘The fluxes of elemental carbon in coastal marine sediments’, Limnol. Oceanogr. 20, 456–463.Google Scholar
  62. Hackett, W. F., W. J. Connors, T. K. Kirk, and J. G. Zeikus: 1977, ‘Microbial decomposition of synthetic 14C-labeled lignins in nature: Lignine biodegradation in a variety of natural materials’, Appl. Environ. Microbiol. 33, 43–51.Google Scholar
  63. Hamilton, L. S.: 1976, Tropical rain forest use and preservation: a study of problems and practices in Venezuela, Office of International Affairs, Sierra Club, International Series No. 4.Google Scholar
  64. Harvey, A. E., M. J. Larsen, and H. F. Jurgensen: 1976, ‘Distribution of Ectomycorrhizae in a mature douglas-fir/larch forest soil in Western Montana’, Forest Science 22, 393–398.Google Scholar
  65. Herring, J. R.: 1977, Charcoal fluxes into Cenozoic sediments of the North Pacific, Ph.D. Dissertation, Scripps Institute of Oceangraphy, University of California, San Diego, 76 pp.Google Scholar
  66. Hesselman, H.: 1916, ‘Om vara skogsföryngringsatgarders inverkan pa salpeterbildningen i marken och dess betydelse för barrskogens föryging’, (English summary), Meddel, fran Staten Skogsför- söksanst [Sweden] pp. 13–14, 923–1076.Google Scholar
  67. Hill, T. L., and R. E. Randell: 1968, 'IGU-Humid Tropics Commission, The ecology of the forest/savanna boundary, Dept. of Geography, McGill University, Montreal, Quebec, Canada, 129 pp.Google Scholar
  68. Hiseroto, B. A., and J. O. Howard: 1978, ‘California's Forest Industry, 1976’, U.S.D.A. Forest Service Resource Bulletin PNW-80, Portland, Oregon, 95 pp.Google Scholar
  69. Hopkins, B.: 1965, Observations on savanna burning in the Olokemeje Forest Reserve, Nigeria, J. Appl. Ecol. 2. 367–381.Google Scholar
  70. Hunter, J. M., and G. K. Ntiri: 1978, ‘Speculations on the future of shifting agriculture in Africa’, JDA 12, 188–208.Google Scholar
  71. Jenkinson, D. S.: 1971, ‘Studies on decomposition of 14-C-labeled organic matter in soil’, Soil Sci. III, 64–70.Google Scholar
  72. Katzman, M. T.: 1976, ‘Paradoxes of Amazonian development in a “resource-starved” world’, JDA 10, 445–460.Google Scholar
  73. Kayll, A. J.: 1974, ‘Use of fire in land management’, in Fire and Ecosystems, T. T. Kozlowski and C. E. Ahlgren, eds, Academic Press, New York, pp. 483–511.Google Scholar
  74. Keeling, C. D.: 1973, ‘The carbon dioxide cycle. Reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants’, in Chemistry of the Lower Atmosphere, S. Rasool, ed., Plenum, New York, pp. 251–329.Google Scholar
  75. Keeling, C. D., and R. B., Bacastow: 1977, ‘Impact of industrial gases on climate’, in Energy and Climate, National Academy of Sciences, pp. 72–95.Google Scholar
  76. Kononova, M. M.: 1961, Soil organic matter, Pergamon Press, Oxford, 450 pp.Google Scholar
  77. Kowal, J. M., and A. H. Kassam: 1978, Agricultural Ecology of Savanna. A Study of West Africa, Clarendon Press, Oxford, 403 pp.Google Scholar
  78. Kozlowski, T. T., and Ahlgren, C. E.: 1974, Fire and Ecosystems, Academic Press, New York, 542 pp.Google Scholar
  79. Lemon, E.: 1976, ‘The land's response to more carbon dioxide’, in The Fate of Fossil Fuel CO 2 in the Oceans, N. R. Anderson and A. Malahoff, eds., Plenum, New York, pp. 97–130.Google Scholar
  80. Lieth, H.: 1975, Primary production of the major vegetation units of the world, in Primary Productivity of the Biosphere, H. Lieth and R. H. Whittaker, eds, Springer Verlag, New York, pp. 203–215.Google Scholar
  81. Lockman, M. R.: 1972, Forest Fire Losses in Canada, Catalog FO 51–2/1969, Information Canada, Ottawa, 6 pp.Google Scholar
  82. Loomis, R. S.: 1979, ‘CO2 and the Biosphere’, in Workshop on the Global Effects of Carbon Dioxide from Fossil Fuels, W. P. Elliott and L. Machta, eds., U.S. Department of Energy, CONF-770385, pp. 51–62.Google Scholar
  83. Machta, L.: 1971, ‘The role of the oceans and biosphere in the carbon dioxide cycle’, in Changing Chemistry of the Oceans, D. Dyrssen and D. Jagner, eds., Nobel Symposium 20, New York, Wiley, pp. 121–145.Google Scholar
  84. Manabe, S., and R. Wetherald: 1975, ‘The effects of doubling the CO2 concentration on the climate of a general circulation model’, J. Atmos. Sci. 32, 3–15.Google Scholar
  85. Martin, J. P., and J. O. Ervin: 1979, ‘Comparative decomposition of organic soil amendments, residues and specific compounds in soil’, preprint, Univ. of California, Riverside, 14 pp.Google Scholar
  86. Mellor, J. W.: 1976, ‘The agriculture in India’, Scientific Am. 235, 155–164;Google Scholar
  87. Middleton, J. T., and E. F. Darley: 1973, ‘Control of air pollution affecting or caused by agriculture’, in Pollution: Engineering and Scientific Solutions E. S. Barrekette, ed., Plenum, pp. 148–157.Google Scholar
  88. Minderman, G.: 1968, ‘Addition, decomposition and accumulation of organic matter in forests’, J. Ecol. 56, 355–362.Google Scholar
  89. Murphy, J. L., L. J. Fritschen, and O. P. Cramer: 1970, ‘Looks at air quality and forest burning’, J. Forestry 530–535.Google Scholar
  90. Mutch, R. W.: 1970, ‘Wildland fires and ecosystems - a hypothesis’, Ecology 51, 1046–1051.Google Scholar
  91. Myers, N.: 1976, ‘An expanded approach to the problem of disappearing species’, Science 185, 198–202.Google Scholar
  92. Nelson, M.: 1973, The development of tropical land: Policy issues in Latin America, The Johns Hopkins Univ. Press, Baltimore, 306 pp.Google Scholar
  93. Nye, P. H., and D. J. Greenland: 1960, The Soil Under Shifting Cultivation, Technical Communication No. 51, Commonwealth Bureau of Soils, Harpenden, U.K., 156 pp.Google Scholar
  94. Oguntoyinbo, J. S., and R. S. Odingo, ‘Climatic variability and land use’, WCC/Overview Paper 19, World Climate Conference, Geneva, Feb. 12–23, 1979, World Meteorological Organization.Google Scholar
  95. Olson, J. R., H. A. Pfuderer, and Y.-H. Chan: 1978, ‘Changes in the global carbon cycle and the biosphere’, ORNL/EIS-109, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 169 pp.Google Scholar
  96. Openshaw, K.: 1974, ‘Wood fuels the developing world’, New Scientist 61, 271–272.Google Scholar
  97. Pelzer, K. J.: 1945, ‘Pioneer Settlement in the Asiatic Tropics’, American Geographic Society, 290 pp.Google Scholar
  98. Persson, R.: 1974, ‘World Forest Resources: Review of the World's Forest Resources in the Early 1970's’, Research Notes No. 17, Department of Forest Survey, Royal College of Forestry, Stockholm.Google Scholar
  99. Persson, R.: 1979, ‘The need for a continuous assessment of the forest resources of the world’, presented at the 8th World Forestry Congress.Google Scholar
  100. Petriceks, J.: 1968, ‘Shifting cultivation in Venezuela’, Ph.D. Thesis, SUNY College of Forestry, Syracuse, New York.Google Scholar
  101. Phillips, J.: 1959, Agriculture and Ecology in Africa, Faber and Faber, London, 350 pp.Google Scholar
  102. Revelle, R., and W. Munk: 1977, ‘The carbon dioxide cycle and the biosphere’, in Energy and Climate, National Academy of Sciences, Washington, D.C., pp. 140–158.Google Scholar
  103. Robock, S. H.: 1975, Brazil: A Study in Development Progress, Lexington Books, D. H. Heath Co., Lexington, Connecticut, 204 pp.Google Scholar
  104. Rodin, L. Ye., and N. I. Bazilevich: 1966, Production and Mineral Cycling in Terrestrial Vegetation, Oliver and Boyd, Edinburgh, 288 pp.Google Scholar
  105. Rodin, L. Ye., N. I. Bazilevich, and N. N. Rozov: 1975, ‘Productivity of the world's main ecosystems’, in Productivity of World Ecosystems, National Academy of Sciences, USA, Washington, D.C.Google Scholar
  106. Root, B. D.: 1976, ‘An estimate of annual global atmospheric pollutant emissions from grassland fires and agricultural burning in the tropics’, The Professional Geographer 28, 349–352.Google Scholar
  107. Ryan, P. W., and McMahon: 1976, ‘Some chemical and physical characteristics of emissions from forest fires’, Paper No. 76-2.3 presented at the 69th Annual Meeting of the Air Pollution Control Association, Portland, Oregon, June 22–July 1, 15 pp.Google Scholar
  108. Sandberg, D. V., J. M. Pierovich, D. G. Fox, and E. W. Ross: 1979, ‘Effects of Fire on Air’, U.S. Department of Agriculture, Forest Service, General Technical Report WO-9, 40 pp.Google Scholar
  109. Sanderson, F. H.: 1975, ‘The Great Food Fumble’, in Food: Politics, Economics, Nutrition, and Research, P. H. Abelson, ed., AAAS, Washington, D.C., pp. 1–8.Google Scholar
  110. Schlesinger, W. H.: 1977, ‘Carbon dioxide balance in terrestrial detritus’, Ann. Rev. Ecol. Syst. 8, 51–81.Google Scholar
  111. Shneour, E.,: 1966, ‘Oxidation of graphitic carbon in certain soils’, Science 151, 991–992.Google Scholar
  112. Siegenthaler, U., and H. Oeschger: 1978, ‘Predicting future atmospheric carbon dioxide levels’, Science 199, 388–395.Google Scholar
  113. Sioli, H.: 1977, ‘Amazonasgebiet - Zerstörung des ökologischen Gleichgewichtes?’, Geol. Rdsch. 66, 782–795.Google Scholar
  114. Smith, D. M., J. J. Griffin, and E. D. Goldberg: 1973, ‘Elemental carbon in marine sediments: a base- line for burning’, Nature 241, 268–270.Google Scholar
  115. Sommer, A.: 1976, ‘Attempt at an assessment of the world's tropical moist forests’, Unasylva 28 5–24.Google Scholar
  116. Spencer, J. E.: 1966, Shifting cultivation in Southeastern Asia, Univ. of Calif. Press, Berkeley and Los Angeles, 247 pp.Google Scholar
  117. Spurgeon, D.: 1979, ‘Agroforestry: new hope for subsistence farmers’, Nature 280, 533–534.Google Scholar
  118. Stamp, L. D.: 1964, in Africa: A Study in Tropical Development Wiley, New York, 144 pp.Google Scholar
  119. Stuiver, N., ‘Atmospheric carbon dioxide and carbon reservoir changes’, Science 199, 253–258.Google Scholar
  120. Swift, M. J.: 1977, ‘The ecology of wood decomposition’, Sci. Prog. Oxf., 64, 175–199.Google Scholar
  121. Synnott, T. J.: 1977, ‘Monitoring tropical forests: a review with special reference to Africa’, MARC Report Number 5, Monitoring Assessment Research Centre, London, 45 pp.Google Scholar
  122. Tans, P. P.: 1978, ‘Carbon 13 and Carbon 14 in trees and the atmospheric CO2 increase’, Doctoral Dissertation Rÿksuniversiteit, Groningen, The Netherlands, 99 pp.Google Scholar
  123. Tardin, A. T., A. P. de Santos, D. C. Liang Lee, F. C. Soares Maia, F. J. Mendonga, G. V. Assungão, J. E. Rodrigues, M. de Moura Abdon, R. A. Novaes, S. Chou Chen, V. Duarte, and Y. E. Shimabukuro: 1969, ‘Levantemento de aréa de desmatemento na Amazonia Legal através de imagens do Satélite LANDSAT’, INPE-COM.3/NTE, January.Google Scholar
  124. Trapnell, C. G.: 1959, ‘Ecological results of woodland burning experiments in Northern Rhodesia’, J. Ecol. 47, 129–168.Google Scholar
  125. Tryon, E. H.: 1948, ‘Effects of charcoal on certain physical, chemical and biological properties of forest soils’, Ecol. Monogr. 18, 81–115.Google Scholar
  126. Ulrich, B. R., R. Mayer, and H. Heller: 1974, ‘Data analysis and data synthesis of forest ecosystems’, Göttinger Bodenkunde Berichte 30, 1–459.Google Scholar
  127. Ulrich, A., and P. L. Gersper: ‘Plant nutrient limitations of tundra plant growth’, in Primary Production Ecology in the Arctic, L. Tiezen, ed., in press (quoted in Loomis, 1979).Google Scholar
  128. UNEP (United Nations Environment Programme): 1978, ‘The State of the Environment: Selected Topics - 1977’, Environmental International 1, 214–217.Google Scholar
  129. UN (United Nations): 1976, Statistical Yearbook, pp. 2–9.Google Scholar
  130. U.S.D.A.: 1969, The Latin American Farmer, ERS 257, 1–139.Google Scholar
  131. U.S.D.A.: 1972, ‘The agricultural economy of Thailand’, ERS 321, 1–1000.Google Scholar
  132. U.S.D.A.: 1974, ‘Tanzania's agricultural economy in brief’, ERS 366, 1–22.Google Scholar
  133. U.S.D.A.: 1978, ‘Grains’, Foreign Agricultural Circular, U.S. Department of Agriculture, Washington, D.C., 35 pp., August, 15.Google Scholar
  134. U.S. Dept. of Health, Education and Welfare, Air Quality Criteria for Carbon Monoxide, 4–10, 1970.Google Scholar
  135. Young, A.: 1976, Tropical Soils and Soil Survey, Cambridge University Press.Google Scholar
  136. Vogl, R. J.: 1974, ‘Effects of fire on grasslands’, in Fire and Ecosystems, Academic, New York; T. T. Kozlowski and C. E. Ahlgren, eds., pp. 139–194.Google Scholar
  137. Walters, H.: 1975, ‘Difficult Issues Underlying Food Problems’, in Food: Politics Economics, Nutrition, and Research, Am. Assoc. for the Adv. of Science, pp. 22–28.Google Scholar
  138. Ward, D. E., C. K. McMahon, and R. W. Johansen: 1976, ‘An update on particulate emissions from forest fires’, (U.S.D.A. Forest Service Southeastern Forest Experiment Station, Macon, Georgia) pp. 76–2.2 presented at 69th Annual Meeting of the Air Pollution Control Association, June 27– July 1.Google Scholar
  139. Watters, R. F.: 1978, ‘The Nature of Shifting Cultivation’, Pacific Viewpoint (Wellington, New Zealand) 1, 59–99.Google Scholar
  140. Watters, R. F.: 1971, ‘Shifting Cultivation in Latin America’, FAO Forestry Development Paper No. 17, Rome, 303 pp.Google Scholar
  141. Watters, R. F., and Bascones, L.: 1971, ‘The influence of shifting cultivation soil properties at Altamira-Calderas, Venezuelean Andes’, FAO - Forestry Paper No. 17, Rome, 291–299.Google Scholar
  142. Wellhausen, E. J.: 1976, ‘The agriculture of Mexico’, Scientific Am. 235, 128–154.Google Scholar
  143. West, O.: 1965, ‘Fire in Vegetation and its Use in Pasture Management with Special Reference to Tropical and Subtropical Africa’, Commonwealth Agricultural Bureaux, pp. 53.Google Scholar
  144. Whittaker, R. H., and G. E. Likens: 1975, ‘The biosphere and man’, in Primary Productivity of the Biosphere, H. Liethand R. Whittaker, eds., Springer Verlag, Berlin, pp. 305–328.Google Scholar
  145. Whittlesey, D.: 1937a, ‘Fixation of shifting cultivation’, Econ. Geograph. 13, 139–154.Google Scholar
  146. Whittlesey, D.: 1937b, ‘Shifting cultivation’, Econ. Geography 13, 35–52.Google Scholar
  147. Wilson, A. T.: 1978, ‘Pioneer agriculture explosion and CO2 levels in the atmosphere’, Nature 273, 40–41.Google Scholar
  148. Wong, C. S.: 1978a, ‘Atmospheric input of carbon dioxide from burning wood’, Science 200, 197–200.Google Scholar
  149. Wong, C. S.: 1978b, ‘Carbon dioxide - a global environmental problem into the future’, Marine Pollution Bulletin 9, 257–264.Google Scholar
  150. Woodwell, G. M., and R. A. Houghton: 1977, ‘Biotic influences on the world carbon budget’, in Global Chemical Cycles and Their Alterations by Man. W. Stumm, ed., Dahlem Konferenzen, Berlin, 61–72.Google Scholar
  151. Woodwell, G. M., R. H. Whittaker, W. A. Reiners, G. E. Likens, C. C. Delwiche, and D. B. Botkin: 1978, ‘The biota and the world carbon budget’, Science 199, 141–146.Google Scholar
  152. World Bank, Forestry (Sector Policy Paper, G. Donaldson et al, Washington, D.C.), 65 pp. 1978.Google Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • Wolfgang Seiler
    • 1
  • Paul J. Crutzen
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderU.S.A.

Personalised recommendations