Journal of Electronic Testing

, Volume 9, Issue 1–2, pp 59–73

Optimization-based multifrequency test generation for analog circuits

  • A. Abderrahman
  • B. Kaminska
  • E. Cerny
Article
  • 46 Downloads

Abstract

A robust test set for analog circuits has to detect faults under maximal masking effects due to variations of circuit parameters in their tolerance box. In this paper we propose an optimization based multifrequency test generation method for detecting parametric faults in linear analog circuits. Given a set of performances and a frequency range, our approach selects the test frequencies that maximize the observability on a circuit performance of a parameter deviation under the worst masking effects of normal variations of the other parameters. Experimental results are provided and validated by HSpice simulations to illustrate the proposed approach.

Keywords

multifrequency test generation parametric faults tolerance effects fault observability maximization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Semiconductor Industry Technology Workshop Conclusions, Semiconductor Industry Association, 1993.Google Scholar
  2. 2.
    L. Milor and V. Visvanathan, “Detection of catastrophic faults in analog integrated circuits,” IEEE Trans. Computer-Aided Design, Vol. 8, pp. 114–130, Feb. 1989.Google Scholar
  3. 3.
    L. Milor and A. Sangiovanni-Vincentelli, “Optimal Test Set Design for Analog Circuits,” Proc. ICCAD, 1990, pp. 294–297.Google Scholar
  4. 4.
    L. Milor and A. Sangiovanni-Vincentelli, “Minimizing Production Test Time to Detect Faults in Analog Circuits,” IEEE trans. Computer-Aided Design, Vol. 13, No. 6, pp. 796–813, June 1994.Google Scholar
  5. 5.
    S.-J. Tsai, “Test Vector Generation for Linear Analog Devices,” Proc. IEEE International Test Conference, 1990, pp. 592–597.Google Scholar
  6. 6.
    N. Ben Hamida and B. Kaminska, “Analog Circuit Testing Based on Sensitivity Computation and New Circuit Modeling,” Proc. IEEE International Test Conference, 1993, pp. 652–661.Google Scholar
  7. 7.
    N. Nagi, A. Chatterjee, A. Balivada, and J. Abraham, “Fault-based Automatic Test Generator for Linear Analog Circuits,” Proc. of ICCAD, 1993, pp. 88–91.Google Scholar
  8. 8.
    M. Slamani and B. Kaminska, “An Integrated Approach for Analog Circuit Testing with Minimum Number of Detected Parameters,” Proc. IEEE International Test Conference, 1994, pp. 631–649.Google Scholar
  9. 9.
    G. Devarayanadurg and M. Soma, “Analytical Fault Modeling and Static Test Generation for Analog ICs,” Proc. of ICCAD, 1994, pp. 44–47.Google Scholar
  10. 10.
    Optimization Toolbox (for use with Matlab) User's Guide, Math-Works, Inc., Dec. 1992.Google Scholar
  11. 11.
    K. Schittowski, “NLQPL: A Fortran-subroutine Solving Constrained Nonlinear Programming Problems,” Operations Research, Vol. 5, pp. 485–500, 1985.Google Scholar
  12. 12.
    J.W. Bandler, P.C. Liu, and J.H.K. Chen, “Worst Case Network Tolerance Optimization,” IEEE Trans. Microwave Theory Tech., Vol. MTT-23, pp. 630–641, Aug. 1975.Google Scholar
  13. 13.
    H. Tromp, “The generalized Tolerance Problem and Worst Case Search,” Proc. IEEE Conf. Computer-Aided-Design of Electronic and Microwave Circuits and Systems, July 1977, pp. 72–77.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. Abderrahman
    • 1
  • B. Kaminska
    • 3
  • E. Cerny
    • 2
  1. 1.Département de Génie Électrique et d'InformatiqueEcole Polytechnique de MontréalMontréalCanada
  2. 2.Département d'Informatique et de Recherche OpérationnelleUniversité de MontréalMontréalCanada
  3. 3.Département de Génie Électrique et d'InformatiqueEcole Polytechnique de MontréalMontréalCanada

Personalised recommendations